
The New IMU Factor

Frank Dellaert & Varun Agrawal

November 2, 2023

1



IMU Factor

The IMU factor has 2 variants:

1. ImuFactor is a 5-way factor between the previous pose and velocity, the current pose
and velocity, and the current IMU bias.

2. ImuFactor2 is a 3-way factor between the previous NavState, the current NavState and
the current IMU bias.

Both variants take a PreintegratedMeasurements object which encodes all the IMU measure-
ments between the previous timestep and the current timestep.

There are also 2 variants of this class:

1. Manifold Preintegration: This version keeps track of the incremental NavState ∆Xij

with respect to the previous NavState, on the NavState manifold itself. It also keeps
track of the R9×6 Jacobian of ∆Xij w.r.t. the bias. This corresponds to Forster et. al.[1]

2. Tangent Preintegration: This version keeps track of the incremental NavState in the
NavState tangent space instead. This is a R

9 vector preintegrated_. It also keeps track
of the R

9×6 jacobian of the preintegrated_ w.r.t. the bias.

The main function of a factor is to calculate an error. This is done exactly the same in both
variants:

e(Xi,Xj) = Xj ⊖ X̂j (1)

where the predicted NavState X̂j at time tj is a function of the NavState Xi at time ti and
the preintegrated measurements PIM :

X̂j = f(Xi, P IM)

The noise model associated with this factor is assumed to be zero-mean Gaussian with a 9× 9
covariance matrix Σij , which is defined in the tangent space TXj

N of the NavState manifold
at the NavState Xj . This (discrete-time) covariance matrix is computed in the preintegrated
measurement class, of which there are two variants as discussed above.

Combined IMU Factor

The IMU factor above requires that bias drift over time be modeled as a separate stochastic
process (using a BetweenFactor for example), a crucial aspect given that the preintegrated
measurements depend on these bias values and are thus correlated. For this reason, we provide
another type of IMU factor which we term the Combined IMU Factor. This factor similarly
has 2 variants:

1. CombinedImuFactor is a 6-way factor between the previous pose, velocity and IMU bias
and the current pose, velocity and IMU bias.

2. CombinedImuFactor2 is a 4-way factor between the previous NavState and IMU bias
and the current NavState and IMU bias.

Since the Combined IMU Factor has a larger state variable due to the inclusion of IMU biases,
the noise model associated with this factor is assumed to be a zero mean Gaussian with a
15× 15 covariance matrix Σ, similarly defined on the tangent space of the NavState manifold.

2



Covariance Matrices

For IMU preintegration, it is important to propagate the uncertainty accurately as well. As
such, we detail the various covariance matrices used in the preintegration step.

• Gyroscope Covariance Qω: Measurement uncertainty of the gyroscope.

• Gyroscope Bias Covariance Q∆bω : The covariance associated with the gyroscope bias
random walk.

• Accelerometer Covariance Qacc : Measurement uncertainty of the accelerometer.

• Accelerometer Bias Covariance Q∆bacc : The covariance associated with the accelerom-
eter bias random walk.

• Integration Covariance Qint : This is the uncertainty due to modeling errors in the
integration from acceleration to velocity and position.

• Initial Bias Estimate Covariance Qinit : This is the uncertainty associated with the
estimation of the bias (since we jointly estimate the bias as well).

Navigation States

Let us assume a setup where frames with image and/or laser measurements are processed at
some fairly low rate, e.g., 10 Hz.

We define the state of the vehicle at those times as attitude, position, and velocity. These
three quantities are jointly referred to as a NavStateXn

b

∆
= {Rn

b , P
n
b , V

n
b }, where the superscript

n denotes the navigation frame, and b the body frame. For simplicity, we drop these indices
below where clear from context.

Vector Fields and Differential Equations

We need a way to describe the evolution of a NavState over time. The NavState lives in a
9-dimensional manifold M , defined by the orthonormality constraints on R. For a NavState
X evolving over time we can write down a differential equation

Ẋ(t) = F (t,X) (2)

where F is a time-varying vector field on M , defined as a mapping from R×M to tangent
vectors at X. A tangent vector at X is defined as the derivative of a trajectory at X, and
for the NavState manifold this will be a triplet

[
Ṙ(t,X), Ṗ (t,X), V̇ (t,X)

]
∈ so(3)× R

3 × R
3

where we use square brackets to indicate a tangent vector. The space of all tangent vectors at
X is denoted by TXM , and hence F (t,X) ∈ TXM . For example, if the state evolves along a
constant velocity trajectory

X(t) = {R0, P0 + V0t, V0}

3



then the differential equation describing the trajectory is

Ẋ(t) = [03x3, V0, 03x1] , X(0) = {R0, P0, V0}

Valid vector fields on a NavState manifold are special, in that the attitude and velocity
derivatives can be arbitrary functions of X and t, but the derivative of position is constrained
to be equal to the current velocity V (t):

Ẋ(t) =
[
Ṙ(X, t), V (t), V̇ (X, t)

]
(3)

Suppose we are given the body angular velocity ωb(t) and non-gravity acceleration ab(t)
in the body frame. We know (from [4]) that the derivative of R can be written as

Ṙ(X, t) = R(t)[ωb(t)]×

where [θ]× ∈ so(3) is the skew-symmetric matrix corresponding to θ, and hence the resulting
exact vector field is

Ẋ(t) =
[
Ṙ(X, t), V (t), V̇ (X, t)

]
=

[
R(t)[ωb(t)]×, V (t), g +R(t)ab(t)

]
(4)

Local Coordinates

Optimization on manifolds relies crucially on the concept of local coordinates. For example,
when optimizing over the rotations SO(3) starting from an initial estimate R0, we define a
local map ΦR0

from θ ∈ R
3 to a neighborhood of SO(3) centered around R0,

ΦR0
(θ) = R0 exp ([θ]×)

where exp is the matrix exponential, given by

exp ([θ]×) =
∞∑

k=0

1

k!
[θ]k

×
(5)

which for SO(3) can be efficiently computed in closed form.
The local coordinates θ are isomorphic to tangent vectors at R0. To see this, define θ = ωt

and note that
dΦR0

(ωt)

dt

∣∣∣∣
t=0

=
dR0 exp ([ωt]×)

dt

∣∣∣∣
t=0

= R0[ωt]×

Hence, the 3-vector ω defines a direction of travel on the SO(3) manifold, but does so in the
local coordinate frame define by R0.

A similar story holds in SE(3): we define local coordinates ξ = [ωt, vt] ∈ R
6 and a mapping

ΦT0
(ξ) = T0 exp ξ̂

where ξ̂ ∈ se(3) is defined as

ξ̂ =

[
[ω]× v

0 0

]
t

and the 6-vectors ξ are mapped to tangent vectors T0ξ̂ at T0.

4



Derivative of The Local Coordinate Mapping

For the local coordinate mapping ΦR0
(θ) in SO(3) we can define a 3× 3 Jacobian H(θ) that

models the effect of an incremental change δ to the local coordinates:

ΦR0
(θ + δ) ≈ ΦR0

(θ) exp ([H(θ)δ]×) = ΦΦR0
(θ) (H(θ)δ) (6)

This Jacobian depends only on θ and, for the case of SO(3), is given by a formula similar to
the matrix exponential map,

H(θ) =

∞∑

k=0

(−1)k

(k + 1)!
[θ]k

×

which can also be computed in closed form. In particular, H(0) = I3×3 at the base R0.

Numerical Integration in Local Coordinates

Inspired by the paper “Lie Group Methods” by Iserles et al. [2], when we have a differential
equation on SO(3),

Ṙ(t) = F (R, t), R(0) = R0 (7)

we can transfer it to a differential equation in the 3-dimensional local coordinate space. To do
so, we model the solution to (7) as

R(t) = ΦR0
(θ(t))

To find an expression for θ̇(t), create a trajectory γ(δ) that passes through R(t) for δ = 0, and
moves θ(t) along the direction θ̇(t):

γ(δ) = R(t+ δ) = ΦR0

(
θ(t) + θ̇(t)δ

)
≈ ΦR(t)

(
H(θ)θ̇(t)δ

)

Taking the derivative for δ = 0 we obtain

Ṙ(t) =
dγ(δ)

dδ

∣∣∣∣
δ=0

=
dΦR(t)

(
H(θ)θ̇(t)δ

)

dδ

∣∣∣∣
δ=0

= R(t)[H(θ)θ̇(t)]×

Comparing this to (7) we obtain a differential equation for θ(t):

θ̇(t) = H(θ)−1
{
R(t)TF (R, t)

}
,̌ θ(0) = 03×1

In other words, the vector field F (R, t) is rotated to the local frame, the inverse hat operator
is applied to get a 3-vector, which is then corrected by H(θ)−1 away from θ = 0.

Retractions

Note that the use of the exponential map in local coordinate mappings is not obligatory, even
in the context of Lie groups. Often it is computationally expedient to use mappings that are
easier to compute, but yet induce the same tangent vector at T0. Mappings that satisfy this
constraint are collectively known as retractions. For example, for SE(3) one could use the
retraction RT0

: R6 → SE(3)

RT0
(ξ) = T0 {exp ([ωt]×) , vt} = {ΦR0

(ωt) , P0 +R0vt}

5



This trajectory describes a linear path in position while the frame rotates, as opposed to the
helical path traced out by the exponential map. The tangent vector at T0 can be computed as

dRT0
(ξ)

dt

∣∣∣∣
t=0

= [R0[ω]×, R0v]

which is identical to the one induced by ΦT0
(ξ) = T0 exp ξ̂.

The NavState manifold is not a Lie group like SE(3), but we can easily define a retraction
that behaves similarly to the one for SE(3), while treating velocities the same way as positions:

RX0
(ζ) = {ΦR0

(ωt) , P0 +R0vt, V0 +R0at}

Here ζ = [ωt, vt, at] is a 9-vector, with respectively angular, position, and velocity components.
The tangent vector at X0 is

dRX0
(ζ)

dt

∣∣∣∣
t=0

= [R0[ω]×, R0v,R0a]

and the isomorphism between R
9 and TX0

M is ζ → [R0[ωt]×, R0vt,R0at].

Integration in Local Coordinates

We now proceed exactly as before to describe the evolution of the NavState in local coordinates.
Let us model the solution of the differential equation (2) as a trajectory ζ(t) = [θ(t), p(t), v(t)],
with ζ(0) = 0, in the local coordinate frame anchored at X0. Note that this trajectory evolves
away from X0, and we use the symbols θ, p, and v to indicate that these are integrated rather
than differential quantities. With that, we have

X(t) = RX0
(ζ(t)) = {ΦR0

(θ(t)) , P0 +R0p(t), V0 +R0v(t)} (8)

We can create a trajectory γ(δ) that passes through X(t) for δ = 0

γ(δ) = X(t+ δ) =
{
ΦR0

(
θ(t) + θ̇(t)δ

)
, P0 +R0 {p(t) + ṗ(t)δ} , V0 +R0 {v(t) + v̇(t)δ}

}

and taking the derivative for δ = 0 we obtain

Ẋ(t) =
dγ(δ)

dδ

∣∣∣∣
δ=0

=
[
R(t)[H(θ)θ̇(t)]×, R0 ṗ(t), R0 v̇(t)

]

Comparing that with the vector field (4), we have exact integration iff
[
R(t)[H(θ)θ̇(t)]×, R0 ṗ(t), R0 v̇(t)

]
=

[
R(t)[ωb(t)]×, V (t), g +R(t)ab(t)

]

Or, as another way to state this, if we solve the differential equations for θ(t), p(t), and v(t)
such that

θ̇(t) = H(θ)−1 ωb(t)

ṗ(t) = RT
0 V0 + v(t)

v̇(t) = RT
0 g +R0

b(t)a
b(t)

where R0
b(t) = RT

0 R(t) is the rotation of the body frame with respect to R0, and we have used
V (t) = V0 +R0v(t).

6



Application: The New IMU Factor

In the IMU factor, we need to predict the NavState Xj from the current NavState Xi and the
IMU measurements in-between. The above scheme suffers from a problem, which is that Xi

needs to be known in order to compensate properly for the initial velocity and rotated gravity
vector. Hence, the idea of Lupton[3] was to split up v(t) into a gravity-induced part and an
accelerometer part

v(t) = vg(t) + va(t)

evolving as

v̇g(t) = RT
i g

v̇a(t) = Ri
b(t)a

b(t)

The solution for the first equation is simply vg(t) = RT
i gt. Similarly, we split the position p(t)

up in three parts
p(t) = pi(t) + pg(t) + pv(t)

evolving as

ṗi(t) = RT
i Vi

ṗg(t) = vg(t) = RT
i gt

ṗv(t) = va(t)

Here the solutions for the two first equations are simply

pi(t) = RT
i Vit

pg(t) = RT
i

gt2

2

The recipe for the IMU factor is then, in summary:

1. Solve the ordinary differential equations

θ̇(t) = H(θ(t))−1 ωb(t)

ṗv(t) = va(t)

v̇a(t) = Ri
b(t)a

b(t)

starting from zero, up to time tij , where Ri
b(t) = exp[θ(t)]× at all times.

2. Form the local coordinate vector as

ζ(tij) = [θ(tij), p(tij), v(tij)] =

[
θ(tij), R

T
i Vitij +RT

i

gt2ij

2
+ pv(tij), R

T
i gtij + va(tij)

]

3. Predict the NavState Xj at time tj from

Xj = RXi
(ζ(tij)) =

{
ΦR0

(θ(tij)) , Pi + Vitij +
gt2ij

2
+Ri pv(tij), Vi + gtij +Ri va(tij)

}

Note that the predicted NavState Xj depends on Xi, but the integrated quantities θ(t),pv(t),
and va(t) do not.

7



A Simple Euler Scheme

To solve the differential equation we can use a simple Euler scheme:

θk+1 = θk + θ̇(tk)∆t = θk +H(θk)
−1 ωb

k∆t (9)

pk+1 = pk + ṗv(tk)∆t = pk + vk∆t (10)
vk+1 = vk + v̇a(tk)∆t = vk + exp ([θk]×) a

b
k∆t (11)

where θk
∆
= θ(tk), pk

∆
= pv(tk), and vk

∆
= va(tk). However, the position propagation can be

done more accurately, by using exact integration of the zero-order hold acceleration abk:

θk+1 = θk +H(θk)
−1 ωb

k∆t (12)

pk+1 = pk + vk∆t +Rka
b
k

∆2
t

2
(13)

vk+1 = vk +Rka
b
k∆t (14)

where we defined the rotation matrix Rk = exp ([θk]×).

Noise Modeling

Given the above solutions to the differential equations, we add noise modeling to account for
the various sources of error in the system

θk+1 = θk +H(θk)
−1 (ωb

k + ǫωk − bωk − ǫωinit)∆t

pk+1 = pk + vk∆t +Rk(a
b
k + ǫak − bak − ǫainit)

∆2
t

2
+ ǫintk (15)

vk+1 = vk +Rk(a
b
k + ǫak − bak − ǫainit)∆t

bak+1 = bak + ǫb
a

k

bωk+1 = bωk + ǫb
ω

k

which we can write compactly as,

θk+1 = fθ(θk, b
w
k , ǫ

ω
k , ǫ

bω

init) (16)

pk+1 = fp(pk, vk, θk, b
a
k, ǫ

a
k, ǫ

a
init, ǫ

int
k )

vk+1 = fv(vk,θk,b
a
k, ǫ

a
k, ǫ

a
init)

bak+1 = fba(b
a
k, ǫ

ba

k )

bωk+1 = fbω(b
ω
k , ǫ

bω

k )

Noise Propagation in IMU Factor

We wish to compute the ImuFactor covariance matrix Σij . Even when we assume uncorrelated
noise on ωb and ab, the noise on the final computed quantities will have a non-trivial covariance
structure, because the intermediate quantities θk and vk appear in multiple places. To model

8



the noise propagation, let us define the preintegrated navigation state ζk = [θk, pk, vk], as a
9D vector on tangent space at and rewrite Eqns. (12-14) as the non-linear function f

ζk+1 = f
(
ζk, a

b
k, ω

b
k

)

Then the noise on ζk+1 propagates as

Σk+1 = AkΣkA
T
k +BkΣ

ad
η BT

k + CkΣ
gd
η CT

k (17)

where Ak is the 9 × 9 partial derivative of f wrpt ζ, and Bk and Ck the respective 9 × 3
partial derivatives with respect to the measured quantities ab and ωb. Note that Σk,Σ

ad
η , and

Σgd
η are discrete time covariances with Σad

η , and Σgd
η divided by ∆t. Please see the section on

Covariance Discretization on page 12.
We start with the noise propagation on θ, which is independent of the other quantities.

Taking the derivative, we have

∂θk+1

∂θk
= I3×3 +

∂H(θk)
−1ωb

k

∂θk
∆t

It can be shown that for small θk we have

∂H(θk)
−1ωb

k

∂θk
≈ −

1

2
[ωb

k]× and hence
∂θk+1

∂θk
= I3×3 −

∆t

2
[ωb

k]×

For the derivatives of pk+1 and vk+1 we need the derivative

∂Rka
b
k

∂θk
= Rk[−abk]×

∂Rk

∂θk
= Rk[−abk]×H(θk)

where we used
∂ (Ra)

∂R
≈ R[−a]×

and the fact that the dependence of the rotation Rk on θk is the already computed H(θk).
Putting all this together, we finally obtain

Ak ≈




I3×3 −
∆t

2 [ωb
k]× 03×3 03×3

Rk[−abk]×H(θk)
∆t

2

2
I3×3 I3×3∆t

Rk[−abk]×H(θk)∆t 03×3 I3×3




The other partial derivatives are simply

Bk =




03×3

Rk
∆t

2

2

Rk∆t


 , Ck =




H(θk)
−1∆t

03×3

03×3




9



Noise Propagation in Combined IMU Factor

We can similarly account for bias drift over time, as is commonly seen in commercial grade
IMUs.

We expand the state vector as ζk = [θk, pk, vk, b
a
k, b

ω
k ] to include the bias terms and define

the augmented noise vector ǫ = [ǫωk , ǫ
a
k, ǫ

ba

k , ǫb
ω

k , ǫintk , ǫb
a

init, ǫ
bω

init]. This gives the noise propagation
equation as

Σk+1 = FkΣkF
T
k +GkQkG

T
k (18)

where Fk is the 15× 15 derivative of f wrpt this new ζ, and Gk is the 15 × 21 matrix for
first order uncertainty propagation. Qk defines the uncertainty of η. The top-left 9× 9 of Fk

is the same as Ak, thus we only have the jacobians wrpt the biases left to account for.
Conveniently, the jacobians of the pose and velocity wrpt the biases are already computed

in the ImuFactor derivation as matrices Bk and Ck, while they are identity matrices wrpt the
biases themselves. Thus, we can easily plug-in the values from the previous section to give us
the final result

Fk ≈




I3×3 −
∆t

2 [ωb
k]× 03×3 03×3 03×3 H(θk)

−1∆t

Rk[−abk]×H(θk)
∆t

2

2
I3×3 I3×3∆t Rk

∆t

2

2
03×3

Rk[−abk]×H(θk)∆t 03×3 I3×3 Rk∆t 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3




Similarly for Qk,we get

Qk =




Σω

Σa

Σba

Σbω

Σint

Σinit11 Σinit12

Σinit21 Σinit22




and for Gk we get

Gk =




∂θ
∂ǫω

∂θ
∂ǫa

∂θ
∂ǫb

a
∂θ

∂ǫb
ω

∂θ
∂ǫint

∂θ
∂ǫb

a

init

∂θ
∂ǫb

ω

init
∂p
∂ǫω

∂p
∂ǫa

∂p

∂ǫb
a

∂p

∂ǫb
ω

∂p
∂ǫint

∂p

∂ǫb
a

init

∂p

∂ǫb
ω

init
∂v
∂ǫω

∂v
∂ǫa

∂v
∂ǫb

a
∂v

∂ǫb
ω

∂v
∂ǫint

∂v
∂ǫb

a

init

∂v
∂ǫb

ω

init
∂ba

∂ǫω
∂ba

∂ǫa
∂ba

∂ǫb
a

∂ba

∂ǫb
ω

∂ba

∂ǫint
∂ba

∂ǫb
a

init

∂ba

∂ǫb
ω

init
∂bω

∂ǫω
∂bω

∂ǫa
∂bω

∂ǫb
a

∂bω

∂ǫb
ω

∂bω

∂ǫint
∂bω

∂ǫb
a

init

∂bω

∂ǫb
ω

init



=




∂θ
∂ǫω

0 0 0 0 0 ∂θ
∂ηb

ω

init

0 ∂p
∂ǫa

0 0 ∂p
∂ǫint

∂p

∂ηb
a

init

0

0 ∂v
∂ǫa

0 0 0 ∂v
∂ηb

a

init

0

0 0 I3×3 0 0 0 0
0 0 0 I3×3 0 0 0




We can perform the block-wise computation of GkQkG
T
k

10



GkQkG
T
k =




∂θ
∂ǫω

0 0 0 0 0 ∂θ
∂ηb

ω

init

0 ∂p
∂ǫa

0 0 ∂p
∂ǫint

∂p

∂ηb
a

init

0

0 ∂v
∂ǫa

0 0 0 ∂v
∂ηb

a

init

0

0 0 I3×3 0 0 0 0
0 0 0 I3×3 0 0 0







Σω

Σa

Σba

Σbω

Σint

Σinit11 Σinit12

Σinit21 Σinit22




GT
k

GkQkG
T
k =




∂θ
∂ǫω

Σω 0 0 0 0 ∂θ
∂ηb

ω

init

Σinit21 ∂θ
∂ηb

ω

init

Σinit22

0 ∂p
∂ǫa

Σa 0 0 ∂p
∂ǫintΣ

int ∂p

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

Σinit12

0 ∂v
∂ǫa

Σa 0 0 0 ∂v
∂ηb

a

init

Σinit11 ∂v
∂ηb

a

init

Σinit12

0 0 Σba 0 0 0 0
0 0 0 Σbω 0 0 0



GT

k

GkQkG
T
k =




∂θ
∂ǫω

Σω 0 0 0 0 ∂θ
∂ηb

ω

init

Σinit21 ∂θ
∂ηb

ω

init

Σinit22

0 ∂p
∂ǫa

Σa 0 0 ∂p
∂ǫintΣ

int ∂p

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

Σinit12

0 ∂v
∂ǫa

Σa 0 0 0 ∂v
∂ηb

a

init

Σinit11 ∂v
∂ηb

a

init

Σinit12

0 0 Σba 0 0 0 0
0 0 0 Σbω 0 0 0







∂θ
∂ǫω

T
0 0 0 0

0 ∂p
∂ǫa

T ∂v
∂ǫa

T
0 0

0 0 0 I3×3 0
0 0 0 0 I3×3

0 ∂p
∂ǫint

T
0 0 0

0 ∂p

∂ηb
a

init

T ∂v
∂ηb

a

init

T
0 0

∂θ
∂ηb

ω

init

T
0 0 0 0




=



∂θ
∂ǫω

Σω ∂θ
∂ǫω

T
+ ∂θ

∂ηb
ω

init

Σinit22 ∂θ
∂ηb

ω

init

T ∂θ
∂ηb

ω

init

Σinit21 ∂p

∂ηb
a

init

T ∂θ
∂ηb

ω

init

Σinit21 ∂v
∂ηb

a

init

T
0

∂p

∂ηb
a

init

Σinit12 ∂θ
∂ηb

ω

init

T ∂p
∂ǫa

Σa ∂p
∂ǫa

T
+ ∂p

∂ǫintΣ
int ∂p

∂ǫint

T

+ ∂p

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

T ∂p
∂ǫa

Σa ∂v
∂ǫa

T
+ ∂p

∂ηb
a

init

Σinit11 ∂v
∂ηb

a

init

T
0

∂v

∂ηb
a

init

Σinit12 ∂θ

∂ηb
ω

init

T ∂v
∂ǫa

Σa ∂p
∂ǫa

T
+ ∂v

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

T ∂v
∂ǫa

Σa ∂v
∂ǫa

T
+ ∂v

∂ηb
a

init

Σinit11 ∂v

∂ηb
a

init

T
0

0 0 0 Σba

0 0 0 0 Σ

which we can break into 3 matrices for clarity, representing the main diagonal and off-
diagonal elements

11



=



∂θ
∂ǫω

Σω ∂θ
∂ǫω

T
0 0 0 0

0 ∂p
∂ǫa

Σa ∂p
∂ǫa

T
0 0 0

0 0 ∂v
∂ǫa

Σa ∂v
∂ǫa

T
0 0

0 0 0 Σba 0
0 0 0 0 Σbω



+




∂θ

∂ηb
ω

init

Σinit22 ∂θ

∂ηb
ω

init

T
0 0 0 0

0 ∂p
∂ǫintΣ

int ∂p
∂ǫint

T
+ ∂p

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

T
0 0 0

0 0 ∂v
∂ηb

a

init

Σinit11 ∂v
∂ηb

a

init

T
0 0

0 0 0 0 0
0 0 0 0 0



+




0 ∂θ

∂ηb
ω

init

Σinit21 ∂p

∂ηb
a

init

T ∂θ

∂ηb
ω

init

Σinit21 ∂v

∂ηb
a

init

T
0 0

∂p

∂ηb
a

init

Σinit12 ∂θ
∂ηb

ω

init

T
0 ∂p

∂ǫa
Σa ∂v

∂ǫa
T
+ ∂p

∂ηb
a

init

Σinit11 ∂v
∂ηb

a

init

T
0 0

∂v
∂ηb

a

init

Σinit12 ∂θ
∂ηb

ω

init

T ∂v
∂ǫa

Σa ∂p
∂ǫa

T
+ ∂v

∂ηb
a

init

Σinit11 ∂p

∂ηb
a

init

T
0 0 0

0 0 0 0 0
0 0 0 0 0




Covariance Discretization

So far, all the covariances are assumed to be continuous since the state and measurement
models are considered to be continuous-time stochastic processes. However, we sample mea-
surements in a discrete-time fashion, necessitating the need to convert the covariances to their
discrete time equivalents.

The IMU is modeled as a first order Gauss-Markov process, with a measurement noise
and a process noise. Following [5, Alg. 1 Page 57] and [7, Eqns 129-130], the measurement
noises [ǫa, ǫω, ǫinit] are simply scaled by 1

∆t
, and the process noises [ǫint, ǫb

a

, ǫb
ω

] are scaled by
∆t where ∆t is the time interval between 2 consecutive samples. For a thorough explanation
of the discretization process, please refer to [6, Section 8.1].

References

[1] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. Imu preintegra-
tion on manifold for efficient visual-inertial maximum-a-posteriori estimation. In Robotics:
Science and Systems, 2015.

[2] Arieh Iserles, Hans Z Munthe-Kaas, Syvert P Nørsett, and Antonella Zanna. Lie-group
methods. Acta Numerica 2000, 9:215–365, 2000.

[3] Todd Lupton and Salah Sukkarieh. Visual-inertial-aided navigation for high-dynamic mo-
tion in built environments without initial conditions. IEEE Transactions on Robotics,
28(1):61–76, 2012.

12



[4] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A mathematical
introduction to robotic manipulation. CRC press, 1994.

[5] Janosch Nikolic. Characterisation, calibration, and design of visual-inertial sensor systems
for robot navigation. PhD thesis, ETH Zurich, 2016.

[6] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John
Wiley & Sons, 2006.

[7] Nikolas Trawny and Stergios I. Roumeliotis. Indirect kalman filter for 3 d attitude estima-
tion. 2005.

13


