LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #endif
104 
105 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
106 #include <xmmintrin.h>
107 #endif
108 
109 // The below has to be defined before including "kmp_barrier.h".
110 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111 #define KMP_INTERNAL_FREE(p) free(p)
112 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 #define KMP_NSEC_PER_USEC 1000L
184 
193 enum {
198  /* 0x04 is no longer used */
207  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
208  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
209  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
210 
211  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
212  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
213 
225  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
226  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
227  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
228  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
229  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
230 };
231 
235 typedef struct ident {
236  kmp_int32 reserved_1;
237  kmp_int32 flags;
239  kmp_int32 reserved_2;
240 #if USE_ITT_BUILD
241 /* but currently used for storing region-specific ITT */
242 /* contextual information. */
243 #endif /* USE_ITT_BUILD */
244  kmp_int32 reserved_3;
245  char const *psource;
249  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
250  kmp_int32 get_openmp_version() {
251  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
252  }
253 } ident_t;
258 // Some forward declarations.
259 typedef union kmp_team kmp_team_t;
260 typedef struct kmp_taskdata kmp_taskdata_t;
261 typedef union kmp_task_team kmp_task_team_t;
262 typedef union kmp_team kmp_team_p;
263 typedef union kmp_info kmp_info_p;
264 typedef union kmp_root kmp_root_p;
265 
266 template <bool C = false, bool S = true> class kmp_flag_32;
267 template <bool C = false, bool S = true> class kmp_flag_64;
268 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
269 class kmp_flag_oncore;
270 
271 #ifdef __cplusplus
272 extern "C" {
273 #endif
274 
275 /* ------------------------------------------------------------------------ */
276 
277 /* Pack two 32-bit signed integers into a 64-bit signed integer */
278 /* ToDo: Fix word ordering for big-endian machines. */
279 #define KMP_PACK_64(HIGH_32, LOW_32) \
280  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
281 
282 // Generic string manipulation macros. Assume that _x is of type char *
283 #define SKIP_WS(_x) \
284  { \
285  while (*(_x) == ' ' || *(_x) == '\t') \
286  (_x)++; \
287  }
288 #define SKIP_DIGITS(_x) \
289  { \
290  while (*(_x) >= '0' && *(_x) <= '9') \
291  (_x)++; \
292  }
293 #define SKIP_TOKEN(_x) \
294  { \
295  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
296  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
297  (_x)++; \
298  }
299 #define SKIP_TO(_x, _c) \
300  { \
301  while (*(_x) != '\0' && *(_x) != (_c)) \
302  (_x)++; \
303  }
304 
305 /* ------------------------------------------------------------------------ */
306 
307 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
308 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
309 
310 /* ------------------------------------------------------------------------ */
311 /* Enumeration types */
312 
313 enum kmp_state_timer {
314  ts_stop,
315  ts_start,
316  ts_pause,
317 
318  ts_last_state
319 };
320 
321 enum dynamic_mode {
322  dynamic_default,
323 #ifdef USE_LOAD_BALANCE
324  dynamic_load_balance,
325 #endif /* USE_LOAD_BALANCE */
326  dynamic_random,
327  dynamic_thread_limit,
328  dynamic_max
329 };
330 
331 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
332  * not include it here */
333 #ifndef KMP_SCHED_TYPE_DEFINED
334 #define KMP_SCHED_TYPE_DEFINED
335 typedef enum kmp_sched {
336  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
337  // Note: need to adjust __kmp_sch_map global array in case enum is changed
338  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
339  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
340  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
341  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
342  kmp_sched_upper_std = 5, // upper bound for standard schedules
343  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
344  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
345 #if KMP_STATIC_STEAL_ENABLED
346  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
347 #endif
348  kmp_sched_upper,
349  kmp_sched_default = kmp_sched_static, // default scheduling
350  kmp_sched_monotonic = 0x80000000
351 } kmp_sched_t;
352 #endif
353 
358 enum sched_type : kmp_int32 {
360  kmp_sch_static_chunked = 33,
362  kmp_sch_dynamic_chunked = 35,
364  kmp_sch_runtime = 37,
366  kmp_sch_trapezoidal = 39,
367 
368  /* accessible only through KMP_SCHEDULE environment variable */
369  kmp_sch_static_greedy = 40,
370  kmp_sch_static_balanced = 41,
371  /* accessible only through KMP_SCHEDULE environment variable */
372  kmp_sch_guided_iterative_chunked = 42,
373  kmp_sch_guided_analytical_chunked = 43,
374  /* accessible only through KMP_SCHEDULE environment variable */
375  kmp_sch_static_steal = 44,
376 
377  /* static with chunk adjustment (e.g., simd) */
378  kmp_sch_static_balanced_chunked = 45,
382  /* accessible only through KMP_SCHEDULE environment variable */
386  kmp_ord_static_chunked = 65,
388  kmp_ord_dynamic_chunked = 67,
389  kmp_ord_guided_chunked = 68,
390  kmp_ord_runtime = 69,
392  kmp_ord_trapezoidal = 71,
395  /* Schedules for Distribute construct */
399  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
400  single iteration/chunk, even if the loop is serialized. For the schedule
401  types listed above, the entire iteration vector is returned if the loop is
402  serialized. This doesn't work for gcc/gcomp sections. */
403  kmp_nm_lower = 160,
405  kmp_nm_static_chunked =
406  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
408  kmp_nm_dynamic_chunked = 163,
410  kmp_nm_runtime = 165,
411  kmp_nm_auto = 166,
412  kmp_nm_trapezoidal = 167,
413 
414  /* accessible only through KMP_SCHEDULE environment variable */
415  kmp_nm_static_greedy = 168,
416  kmp_nm_static_balanced = 169,
417  /* accessible only through KMP_SCHEDULE environment variable */
418  kmp_nm_guided_iterative_chunked = 170,
419  kmp_nm_guided_analytical_chunked = 171,
420  kmp_nm_static_steal =
421  172, /* accessible only through OMP_SCHEDULE environment variable */
422 
423  kmp_nm_ord_static_chunked = 193,
425  kmp_nm_ord_dynamic_chunked = 195,
426  kmp_nm_ord_guided_chunked = 196,
427  kmp_nm_ord_runtime = 197,
429  kmp_nm_ord_trapezoidal = 199,
432  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
433  we need to distinguish the three possible cases (no modifier, monotonic
434  modifier, nonmonotonic modifier), we need separate bits for each modifier.
435  The absence of monotonic does not imply nonmonotonic, especially since 4.5
436  says that the behaviour of the "no modifier" case is implementation defined
437  in 4.5, but will become "nonmonotonic" in 5.0.
438 
439  Since we're passing a full 32 bit value, we can use a couple of high bits
440  for these flags; out of paranoia we avoid the sign bit.
441 
442  These modifiers can be or-ed into non-static schedules by the compiler to
443  pass the additional information. They will be stripped early in the
444  processing in __kmp_dispatch_init when setting up schedules, so most of the
445  code won't ever see schedules with these bits set. */
447  (1 << 29),
449  (1 << 30),
451 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
452  (enum sched_type)( \
454 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
455 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
456 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
457  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
458 #define SCHEDULE_GET_MODIFIERS(s) \
459  ((enum sched_type)( \
460  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
461 #define SCHEDULE_SET_MODIFIERS(s, m) \
462  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
463 #define SCHEDULE_NONMONOTONIC 0
464 #define SCHEDULE_MONOTONIC 1
465 
467 };
468 
469 // Apply modifiers on internal kind to standard kind
470 static inline void
471 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
472  enum sched_type internal_kind) {
473  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
474  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
475  }
476 }
477 
478 // Apply modifiers on standard kind to internal kind
479 static inline void
480 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
481  enum sched_type *internal_kind) {
482  if ((int)kind & (int)kmp_sched_monotonic) {
483  *internal_kind = (enum sched_type)((int)*internal_kind |
485  }
486 }
487 
488 // Get standard schedule without modifiers
489 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
490  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
491 }
492 
493 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
494 typedef union kmp_r_sched {
495  struct {
496  enum sched_type r_sched_type;
497  int chunk;
498  };
499  kmp_int64 sched;
500 } kmp_r_sched_t;
501 
502 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
503 // internal schedule types
504 
505 enum library_type {
506  library_none,
507  library_serial,
508  library_turnaround,
509  library_throughput
510 };
511 
512 #if KMP_OS_LINUX
513 enum clock_function_type {
514  clock_function_gettimeofday,
515  clock_function_clock_gettime
516 };
517 #endif /* KMP_OS_LINUX */
518 
519 #if KMP_MIC_SUPPORTED
520 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
521 #endif
522 
523 /* -- fast reduction stuff ------------------------------------------------ */
524 
525 #undef KMP_FAST_REDUCTION_BARRIER
526 #define KMP_FAST_REDUCTION_BARRIER 1
527 
528 #undef KMP_FAST_REDUCTION_CORE_DUO
529 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
530 #define KMP_FAST_REDUCTION_CORE_DUO 1
531 #endif
532 
533 enum _reduction_method {
534  reduction_method_not_defined = 0,
535  critical_reduce_block = (1 << 8),
536  atomic_reduce_block = (2 << 8),
537  tree_reduce_block = (3 << 8),
538  empty_reduce_block = (4 << 8)
539 };
540 
541 // Description of the packed_reduction_method variable:
542 // The packed_reduction_method variable consists of two enum types variables
543 // that are packed together into 0-th byte and 1-st byte:
544 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
545 // barrier that will be used in fast reduction: bs_plain_barrier or
546 // bs_reduction_barrier
547 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
548 // be used in fast reduction;
549 // Reduction method is of 'enum _reduction_method' type and it's defined the way
550 // so that the bits of 0-th byte are empty, so no need to execute a shift
551 // instruction while packing/unpacking
552 
553 #if KMP_FAST_REDUCTION_BARRIER
554 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
555  ((reduction_method) | (barrier_type))
556 
557 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
558  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
559 
560 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
561  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
562 #else
563 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
564  (reduction_method)
565 
566 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
567  (packed_reduction_method)
568 
569 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
570 #endif
571 
572 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
573  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
574  (which_reduction_block))
575 
576 #if KMP_FAST_REDUCTION_BARRIER
577 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
578  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
579 
580 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
581  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
582 #endif
583 
584 typedef int PACKED_REDUCTION_METHOD_T;
585 
586 /* -- end of fast reduction stuff ----------------------------------------- */
587 
588 #if KMP_OS_WINDOWS
589 #define USE_CBLKDATA
590 #if KMP_MSVC_COMPAT
591 #pragma warning(push)
592 #pragma warning(disable : 271 310)
593 #endif
594 #include <windows.h>
595 #if KMP_MSVC_COMPAT
596 #pragma warning(pop)
597 #endif
598 #endif
599 
600 #if KMP_OS_UNIX
601 #include <dlfcn.h>
602 #include <pthread.h>
603 #endif
604 
605 enum kmp_hw_t : int {
606  KMP_HW_UNKNOWN = -1,
607  KMP_HW_SOCKET = 0,
608  KMP_HW_PROC_GROUP,
609  KMP_HW_NUMA,
610  KMP_HW_DIE,
611  KMP_HW_LLC,
612  KMP_HW_L3,
613  KMP_HW_TILE,
614  KMP_HW_MODULE,
615  KMP_HW_L2,
616  KMP_HW_L1,
617  KMP_HW_CORE,
618  KMP_HW_THREAD,
619  KMP_HW_LAST
620 };
621 
622 typedef enum kmp_hw_core_type_t {
623  KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
624 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
625  KMP_HW_CORE_TYPE_ATOM = 0x20,
626  KMP_HW_CORE_TYPE_CORE = 0x40,
627  KMP_HW_MAX_NUM_CORE_TYPES = 3,
628 #else
629  KMP_HW_MAX_NUM_CORE_TYPES = 1,
630 #endif
631 } kmp_hw_core_type_t;
632 
633 #define KMP_HW_MAX_NUM_CORE_EFFS 8
634 
635 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
636  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
637 #define KMP_ASSERT_VALID_HW_TYPE(type) \
638  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
639 
640 #define KMP_FOREACH_HW_TYPE(type) \
641  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
642  type = (kmp_hw_t)((int)type + 1))
643 
644 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
645 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
646 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
647 
648 /* Only Linux* OS and Windows* OS support thread affinity. */
649 #if KMP_AFFINITY_SUPPORTED
650 
651 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
652 #if KMP_OS_WINDOWS
653 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
654 typedef struct GROUP_AFFINITY {
655  KAFFINITY Mask;
656  WORD Group;
657  WORD Reserved[3];
658 } GROUP_AFFINITY;
659 #endif /* _MSC_VER < 1600 */
660 #if KMP_GROUP_AFFINITY
661 extern int __kmp_num_proc_groups;
662 #else
663 static const int __kmp_num_proc_groups = 1;
664 #endif /* KMP_GROUP_AFFINITY */
665 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
666 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
667 
668 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
669 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
670 
671 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
672 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
673 
674 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
675  GROUP_AFFINITY *);
676 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
677 #endif /* KMP_OS_WINDOWS */
678 
679 #if KMP_USE_HWLOC
680 extern hwloc_topology_t __kmp_hwloc_topology;
681 extern int __kmp_hwloc_error;
682 #endif
683 
684 extern size_t __kmp_affin_mask_size;
685 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
686 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
687 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
688 #define KMP_CPU_SET_ITERATE(i, mask) \
689  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
690 #define KMP_CPU_SET(i, mask) (mask)->set(i)
691 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
692 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
693 #define KMP_CPU_ZERO(mask) (mask)->zero()
694 #define KMP_CPU_ISEMPTY(mask) (mask)->empty()
695 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
696 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
697 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
698 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
699 #define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
700 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
701 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
702 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
703 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
704 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
705 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
706 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
707 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
708  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
709 #define KMP_CPU_FREE_ARRAY(arr, n) \
710  __kmp_affinity_dispatch->deallocate_mask_array(arr)
711 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
712 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
713 #define __kmp_get_system_affinity(mask, abort_bool) \
714  (mask)->get_system_affinity(abort_bool)
715 #define __kmp_set_system_affinity(mask, abort_bool) \
716  (mask)->set_system_affinity(abort_bool)
717 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
718 
719 class KMPAffinity {
720 public:
721  class Mask {
722  public:
723  void *operator new(size_t n);
724  void operator delete(void *p);
725  void *operator new[](size_t n);
726  void operator delete[](void *p);
727  virtual ~Mask() {}
728  // Set bit i to 1
729  virtual void set(int i) {}
730  // Return bit i
731  virtual bool is_set(int i) const { return false; }
732  // Set bit i to 0
733  virtual void clear(int i) {}
734  // Zero out entire mask
735  virtual void zero() {}
736  // Check whether mask is empty
737  virtual bool empty() const { return true; }
738  // Copy src into this mask
739  virtual void copy(const Mask *src) {}
740  // this &= rhs
741  virtual void bitwise_and(const Mask *rhs) {}
742  // this |= rhs
743  virtual void bitwise_or(const Mask *rhs) {}
744  // this = ~this
745  virtual void bitwise_not() {}
746  // this == rhs
747  virtual bool is_equal(const Mask *rhs) const { return false; }
748  // API for iterating over an affinity mask
749  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
750  virtual int begin() const { return 0; }
751  virtual int end() const { return 0; }
752  virtual int next(int previous) const { return 0; }
753 #if KMP_OS_WINDOWS
754  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
755 #endif
756  // Set the system's affinity to this affinity mask's value
757  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
758  // Set this affinity mask to the current system affinity
759  virtual int get_system_affinity(bool abort_on_error) { return -1; }
760  // Only 1 DWORD in the mask should have any procs set.
761  // Return the appropriate index, or -1 for an invalid mask.
762  virtual int get_proc_group() const { return -1; }
763  int get_max_cpu() const {
764  int cpu;
765  int max_cpu = -1;
766  KMP_CPU_SET_ITERATE(cpu, this) {
767  if (cpu > max_cpu)
768  max_cpu = cpu;
769  }
770  return max_cpu;
771  }
772  };
773  void *operator new(size_t n);
774  void operator delete(void *p);
775  // Need virtual destructor
776  virtual ~KMPAffinity() = default;
777  // Determine if affinity is capable
778  virtual void determine_capable(const char *env_var) {}
779  // Bind the current thread to os proc
780  virtual void bind_thread(int proc) {}
781  // Factory functions to allocate/deallocate a mask
782  virtual Mask *allocate_mask() { return nullptr; }
783  virtual void deallocate_mask(Mask *m) {}
784  virtual Mask *allocate_mask_array(int num) { return nullptr; }
785  virtual void deallocate_mask_array(Mask *m) {}
786  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
787  static void pick_api();
788  static void destroy_api();
789  enum api_type {
790  NATIVE_OS
791 #if KMP_USE_HWLOC
792  ,
793  HWLOC
794 #endif
795  };
796  virtual api_type get_api_type() const {
797  KMP_ASSERT(0);
798  return NATIVE_OS;
799  }
800 
801 private:
802  static bool picked_api;
803 };
804 
805 typedef KMPAffinity::Mask kmp_affin_mask_t;
806 extern KMPAffinity *__kmp_affinity_dispatch;
807 
808 class kmp_affinity_raii_t {
809  kmp_affin_mask_t *mask;
810  bool restored;
811 
812 public:
813  kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
814  : restored(false) {
815  if (KMP_AFFINITY_CAPABLE()) {
816  KMP_CPU_ALLOC(mask);
817  KMP_ASSERT(mask != NULL);
818  __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
819  if (new_mask)
820  __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
821  }
822  }
823  void restore() {
824  if (!restored && KMP_AFFINITY_CAPABLE()) {
825  __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
826  KMP_CPU_FREE(mask);
827  }
828  restored = true;
829  }
830  ~kmp_affinity_raii_t() { restore(); }
831 };
832 
833 // Declare local char buffers with this size for printing debug and info
834 // messages, using __kmp_affinity_print_mask().
835 #define KMP_AFFIN_MASK_PRINT_LEN 1024
836 
837 enum affinity_type {
838  affinity_none = 0,
839  affinity_physical,
840  affinity_logical,
841  affinity_compact,
842  affinity_scatter,
843  affinity_explicit,
844  affinity_balanced,
845  affinity_disabled, // not used outsize the env var parser
846  affinity_default
847 };
848 
849 enum affinity_top_method {
850  affinity_top_method_all = 0, // try all (supported) methods, in order
851 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
852  affinity_top_method_apicid,
853  affinity_top_method_x2apicid,
854  affinity_top_method_x2apicid_1f,
855 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
856  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
857 #if KMP_GROUP_AFFINITY
858  affinity_top_method_group,
859 #endif /* KMP_GROUP_AFFINITY */
860  affinity_top_method_flat,
861 #if KMP_USE_HWLOC
862  affinity_top_method_hwloc,
863 #endif
864  affinity_top_method_default
865 };
866 
867 #define affinity_respect_mask_default (2)
868 
869 typedef struct kmp_affinity_flags_t {
870  unsigned dups : 1;
871  unsigned verbose : 1;
872  unsigned warnings : 1;
873  unsigned respect : 2;
874  unsigned reset : 1;
875  unsigned initialized : 1;
876  unsigned core_types_gran : 1;
877  unsigned core_effs_gran : 1;
878  unsigned omp_places : 1;
879  unsigned reserved : 22;
880 } kmp_affinity_flags_t;
881 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
882 
883 typedef struct kmp_affinity_ids_t {
884  int ids[KMP_HW_LAST];
885  int operator[](size_t idx) const { return ids[idx]; }
886  int &operator[](size_t idx) { return ids[idx]; }
887  kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
888  for (int i = 0; i < KMP_HW_LAST; ++i)
889  ids[i] = rhs[i];
890  return *this;
891  }
892 } kmp_affinity_ids_t;
893 
894 typedef struct kmp_affinity_attrs_t {
895  int core_type : 8;
896  int core_eff : 8;
897  unsigned valid : 1;
898  unsigned reserved : 15;
899 } kmp_affinity_attrs_t;
900 #define KMP_AFFINITY_ATTRS_UNKNOWN \
901  { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
902 
903 typedef struct kmp_affinity_t {
904  char *proclist;
905  enum affinity_type type;
906  kmp_hw_t gran;
907  int gran_levels;
908  kmp_affinity_attrs_t core_attr_gran;
909  int compact;
910  int offset;
911  kmp_affinity_flags_t flags;
912  unsigned num_masks;
913  kmp_affin_mask_t *masks;
914  kmp_affinity_ids_t *ids;
915  kmp_affinity_attrs_t *attrs;
916  unsigned num_os_id_masks;
917  kmp_affin_mask_t *os_id_masks;
918  const char *env_var;
919 } kmp_affinity_t;
920 
921 #define KMP_AFFINITY_INIT(env) \
922  { \
923  nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
924  0, 0, \
925  {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
926  FALSE, FALSE, FALSE}, \
927  0, nullptr, nullptr, nullptr, 0, nullptr, env \
928  }
929 
930 extern enum affinity_top_method __kmp_affinity_top_method;
931 extern kmp_affinity_t __kmp_affinity;
932 extern kmp_affinity_t __kmp_hh_affinity;
933 extern kmp_affinity_t *__kmp_affinities[2];
934 
935 extern void __kmp_affinity_bind_thread(int which);
936 
937 extern kmp_affin_mask_t *__kmp_affin_fullMask;
938 extern kmp_affin_mask_t *__kmp_affin_origMask;
939 extern char *__kmp_cpuinfo_file;
940 
941 #endif /* KMP_AFFINITY_SUPPORTED */
942 
943 // This needs to be kept in sync with the values in omp.h !!!
944 typedef enum kmp_proc_bind_t {
945  proc_bind_false = 0,
946  proc_bind_true,
947  proc_bind_primary,
948  proc_bind_close,
949  proc_bind_spread,
950  proc_bind_intel, // use KMP_AFFINITY interface
951  proc_bind_default
952 } kmp_proc_bind_t;
953 
954 typedef struct kmp_nested_proc_bind_t {
955  kmp_proc_bind_t *bind_types;
956  int size;
957  int used;
958 } kmp_nested_proc_bind_t;
959 
960 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
961 extern kmp_proc_bind_t __kmp_teams_proc_bind;
962 
963 extern int __kmp_display_affinity;
964 extern char *__kmp_affinity_format;
965 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
966 #if OMPT_SUPPORT
967 extern int __kmp_tool;
968 extern char *__kmp_tool_libraries;
969 #endif // OMPT_SUPPORT
970 
971 #if KMP_AFFINITY_SUPPORTED
972 #define KMP_PLACE_ALL (-1)
973 #define KMP_PLACE_UNDEFINED (-2)
974 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
975 #define KMP_AFFINITY_NON_PROC_BIND \
976  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
977  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
978  (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
979 #endif /* KMP_AFFINITY_SUPPORTED */
980 
981 extern int __kmp_affinity_num_places;
982 
983 typedef enum kmp_cancel_kind_t {
984  cancel_noreq = 0,
985  cancel_parallel = 1,
986  cancel_loop = 2,
987  cancel_sections = 3,
988  cancel_taskgroup = 4
989 } kmp_cancel_kind_t;
990 
991 // KMP_HW_SUBSET support:
992 typedef struct kmp_hws_item {
993  int num;
994  int offset;
995 } kmp_hws_item_t;
996 
997 extern kmp_hws_item_t __kmp_hws_socket;
998 extern kmp_hws_item_t __kmp_hws_die;
999 extern kmp_hws_item_t __kmp_hws_node;
1000 extern kmp_hws_item_t __kmp_hws_tile;
1001 extern kmp_hws_item_t __kmp_hws_core;
1002 extern kmp_hws_item_t __kmp_hws_proc;
1003 extern int __kmp_hws_requested;
1004 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1005 
1006 /* ------------------------------------------------------------------------ */
1007 
1008 #define KMP_PAD(type, sz) \
1009  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1010 
1011 // We need to avoid using -1 as a GTID as +1 is added to the gtid
1012 // when storing it in a lock, and the value 0 is reserved.
1013 #define KMP_GTID_DNE (-2) /* Does not exist */
1014 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1015 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1016 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
1017 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1018 
1019 /* OpenMP 5.0 Memory Management support */
1020 
1021 #ifndef __OMP_H
1022 // Duplicate type definitions from omp.h
1023 typedef uintptr_t omp_uintptr_t;
1024 
1025 typedef enum {
1026  omp_atk_sync_hint = 1,
1027  omp_atk_alignment = 2,
1028  omp_atk_access = 3,
1029  omp_atk_pool_size = 4,
1030  omp_atk_fallback = 5,
1031  omp_atk_fb_data = 6,
1032  omp_atk_pinned = 7,
1033  omp_atk_partition = 8
1034 } omp_alloctrait_key_t;
1035 
1036 typedef enum {
1037  omp_atv_false = 0,
1038  omp_atv_true = 1,
1039  omp_atv_contended = 3,
1040  omp_atv_uncontended = 4,
1041  omp_atv_serialized = 5,
1042  omp_atv_sequential = omp_atv_serialized, // (deprecated)
1043  omp_atv_private = 6,
1044  omp_atv_all = 7,
1045  omp_atv_thread = 8,
1046  omp_atv_pteam = 9,
1047  omp_atv_cgroup = 10,
1048  omp_atv_default_mem_fb = 11,
1049  omp_atv_null_fb = 12,
1050  omp_atv_abort_fb = 13,
1051  omp_atv_allocator_fb = 14,
1052  omp_atv_environment = 15,
1053  omp_atv_nearest = 16,
1054  omp_atv_blocked = 17,
1055  omp_atv_interleaved = 18
1056 } omp_alloctrait_value_t;
1057 #define omp_atv_default ((omp_uintptr_t)-1)
1058 
1059 typedef void *omp_memspace_handle_t;
1060 extern omp_memspace_handle_t const omp_default_mem_space;
1061 extern omp_memspace_handle_t const omp_large_cap_mem_space;
1062 extern omp_memspace_handle_t const omp_const_mem_space;
1063 extern omp_memspace_handle_t const omp_high_bw_mem_space;
1064 extern omp_memspace_handle_t const omp_low_lat_mem_space;
1065 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1066 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1067 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1068 
1069 typedef struct {
1070  omp_alloctrait_key_t key;
1071  omp_uintptr_t value;
1072 } omp_alloctrait_t;
1073 
1074 typedef void *omp_allocator_handle_t;
1075 extern omp_allocator_handle_t const omp_null_allocator;
1076 extern omp_allocator_handle_t const omp_default_mem_alloc;
1077 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1078 extern omp_allocator_handle_t const omp_const_mem_alloc;
1079 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1080 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1081 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1082 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1083 extern omp_allocator_handle_t const omp_thread_mem_alloc;
1084 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1085 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1086 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1087 extern omp_allocator_handle_t const kmp_max_mem_alloc;
1088 extern omp_allocator_handle_t __kmp_def_allocator;
1089 
1090 // end of duplicate type definitions from omp.h
1091 #endif
1092 
1093 extern int __kmp_memkind_available;
1094 
1095 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1096 
1097 typedef struct kmp_allocator_t {
1098  omp_memspace_handle_t memspace;
1099  void **memkind; // pointer to memkind
1100  size_t alignment;
1101  omp_alloctrait_value_t fb;
1102  kmp_allocator_t *fb_data;
1103  kmp_uint64 pool_size;
1104  kmp_uint64 pool_used;
1105  bool pinned;
1106 } kmp_allocator_t;
1107 
1108 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1109  omp_memspace_handle_t,
1110  int ntraits,
1111  omp_alloctrait_t traits[]);
1112 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1113 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1114 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1115 // external interfaces, may be used by compiler
1116 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1117 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1118  omp_allocator_handle_t al);
1119 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1120  omp_allocator_handle_t al);
1121 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1122  omp_allocator_handle_t al,
1123  omp_allocator_handle_t free_al);
1124 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1125 // internal interfaces, contain real implementation
1126 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1127  omp_allocator_handle_t al);
1128 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1129  omp_allocator_handle_t al);
1130 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1131  omp_allocator_handle_t al,
1132  omp_allocator_handle_t free_al);
1133 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1134 
1135 extern void __kmp_init_memkind();
1136 extern void __kmp_fini_memkind();
1137 extern void __kmp_init_target_mem();
1138 
1139 /* ------------------------------------------------------------------------ */
1140 
1141 #if ENABLE_LIBOMPTARGET
1142 extern void __kmp_init_target_task();
1143 #endif
1144 
1145 /* ------------------------------------------------------------------------ */
1146 
1147 #define KMP_UINT64_MAX \
1148  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1149 
1150 #define KMP_MIN_NTH 1
1151 
1152 #ifndef KMP_MAX_NTH
1153 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1154 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1155 #else
1156 #ifdef __ve__
1157 // VE's pthread supports only up to 64 threads per a VE process.
1158 // Please check p. 14 of following documentation for more details.
1159 // https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1160 #define KMP_MAX_NTH 64
1161 #else
1162 #define KMP_MAX_NTH INT_MAX
1163 #endif
1164 #endif
1165 #endif /* KMP_MAX_NTH */
1166 
1167 #ifdef PTHREAD_STACK_MIN
1168 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1169 #else
1170 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1171 #endif
1172 
1173 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1174 
1175 #if KMP_ARCH_X86
1176 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1177 #elif KMP_ARCH_X86_64
1178 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1179 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1180 #elif KMP_ARCH_VE
1181 // Minimum stack size for pthread for VE is 4MB.
1182 // https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1183 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1184 #else
1185 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1186 #endif
1187 
1188 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1189 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1190 #define KMP_MAX_MALLOC_POOL_INCR \
1191  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1192 
1193 #define KMP_MIN_STKOFFSET (0)
1194 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1195 #if KMP_OS_DARWIN
1196 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1197 #else
1198 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1199 #endif
1200 
1201 #define KMP_MIN_STKPADDING (0)
1202 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1203 
1204 #define KMP_BLOCKTIME_MULTIPLIER \
1205  (1000000) /* number of blocktime units per second */
1206 #define KMP_MIN_BLOCKTIME (0)
1207 #define KMP_MAX_BLOCKTIME \
1208  (INT_MAX) /* Must be this for "infinite" setting the work */
1209 
1210 /* __kmp_blocktime is in microseconds */
1211 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1212 
1213 #if KMP_USE_MONITOR
1214 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1215 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1216 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1217 
1218 /* Calculate new number of monitor wakeups for a specific block time based on
1219  previous monitor_wakeups. Only allow increasing number of wakeups */
1220 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1221  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1222  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1223  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1224  ? (monitor_wakeups) \
1225  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1226 
1227 /* Calculate number of intervals for a specific block time based on
1228  monitor_wakeups */
1229 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1230  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1231  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1232 #else
1233 #define KMP_BLOCKTIME(team, tid) \
1234  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1235 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1236 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1237 extern kmp_uint64 __kmp_ticks_per_msec;
1238 extern kmp_uint64 __kmp_ticks_per_usec;
1239 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1240 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1241 #else
1242 #define KMP_NOW() __kmp_hardware_timestamp()
1243 #endif
1244 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1245  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1246 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1247 #else
1248 // System time is retrieved sporadically while blocking.
1249 extern kmp_uint64 __kmp_now_nsec();
1250 #define KMP_NOW() __kmp_now_nsec()
1251 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1252  ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1253 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1254 #endif
1255 #endif // KMP_USE_MONITOR
1256 
1257 #define KMP_MIN_STATSCOLS 40
1258 #define KMP_MAX_STATSCOLS 4096
1259 #define KMP_DEFAULT_STATSCOLS 80
1260 
1261 #define KMP_MIN_INTERVAL 0
1262 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1263 #define KMP_DEFAULT_INTERVAL 0
1264 
1265 #define KMP_MIN_CHUNK 1
1266 #define KMP_MAX_CHUNK (INT_MAX - 1)
1267 #define KMP_DEFAULT_CHUNK 1
1268 
1269 #define KMP_MIN_DISP_NUM_BUFF 1
1270 #define KMP_DFLT_DISP_NUM_BUFF 7
1271 #define KMP_MAX_DISP_NUM_BUFF 4096
1272 
1273 #define KMP_MAX_ORDERED 8
1274 
1275 #define KMP_MAX_FIELDS 32
1276 
1277 #define KMP_MAX_BRANCH_BITS 31
1278 
1279 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1280 
1281 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1282 
1283 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1284 
1285 /* Minimum number of threads before switch to TLS gtid (experimentally
1286  determined) */
1287 /* josh TODO: what about OS X* tuning? */
1288 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1289 #define KMP_TLS_GTID_MIN 5
1290 #else
1291 #define KMP_TLS_GTID_MIN INT_MAX
1292 #endif
1293 
1294 #define KMP_MASTER_TID(tid) (0 == (tid))
1295 #define KMP_WORKER_TID(tid) (0 != (tid))
1296 
1297 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1298 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1299 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1300 
1301 #ifndef TRUE
1302 #define FALSE 0
1303 #define TRUE (!FALSE)
1304 #endif
1305 
1306 /* NOTE: all of the following constants must be even */
1307 
1308 #if KMP_OS_WINDOWS
1309 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1310 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1311 #elif KMP_OS_LINUX
1312 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1313 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1314 #elif KMP_OS_DARWIN
1315 /* TODO: tune for KMP_OS_DARWIN */
1316 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1317 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1318 #elif KMP_OS_DRAGONFLY
1319 /* TODO: tune for KMP_OS_DRAGONFLY */
1320 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1321 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1322 #elif KMP_OS_FREEBSD
1323 /* TODO: tune for KMP_OS_FREEBSD */
1324 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1325 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1326 #elif KMP_OS_NETBSD
1327 /* TODO: tune for KMP_OS_NETBSD */
1328 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1329 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1330 #elif KMP_OS_HURD
1331 /* TODO: tune for KMP_OS_HURD */
1332 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1333 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1334 #elif KMP_OS_OPENBSD
1335 /* TODO: tune for KMP_OS_OPENBSD */
1336 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1337 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1338 #endif
1339 
1340 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1341 typedef struct kmp_cpuid {
1342  kmp_uint32 eax;
1343  kmp_uint32 ebx;
1344  kmp_uint32 ecx;
1345  kmp_uint32 edx;
1346 } kmp_cpuid_t;
1347 
1348 typedef struct kmp_cpuinfo_flags_t {
1349  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1350  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1351  unsigned hybrid : 1;
1352  unsigned reserved : 29; // Ensure size of 32 bits
1353 } kmp_cpuinfo_flags_t;
1354 
1355 typedef struct kmp_cpuinfo {
1356  int initialized; // If 0, other fields are not initialized.
1357  int signature; // CPUID(1).EAX
1358  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1359  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1360  // Model << 4 ) + Model)
1361  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1362  kmp_cpuinfo_flags_t flags;
1363  int apic_id;
1364  int physical_id;
1365  int logical_id;
1366  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1367  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1368 } kmp_cpuinfo_t;
1369 
1370 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1371 
1372 #if KMP_OS_UNIX
1373 // subleaf is only needed for cache and topology discovery and can be set to
1374 // zero in most cases
1375 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1376  __asm__ __volatile__("cpuid"
1377  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1378  : "a"(leaf), "c"(subleaf));
1379 }
1380 // Load p into FPU control word
1381 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1382  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1383 }
1384 // Store FPU control word into p
1385 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1386  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1387 }
1388 static inline void __kmp_clear_x87_fpu_status_word() {
1389 #if KMP_MIC
1390  // 32-bit protected mode x87 FPU state
1391  struct x87_fpu_state {
1392  unsigned cw;
1393  unsigned sw;
1394  unsigned tw;
1395  unsigned fip;
1396  unsigned fips;
1397  unsigned fdp;
1398  unsigned fds;
1399  };
1400  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1401  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1402  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1403  "fldenv %0\n\t" // load FP env back
1404  : "+m"(fpu_state), "+m"(fpu_state.sw));
1405 #else
1406  __asm__ __volatile__("fnclex");
1407 #endif // KMP_MIC
1408 }
1409 #if __SSE__
1410 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1411 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1412 #else
1413 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1414 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1415 #endif
1416 #else
1417 // Windows still has these as external functions in assembly file
1418 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1419 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1420 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1421 extern void __kmp_clear_x87_fpu_status_word();
1422 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1423 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1424 #endif // KMP_OS_UNIX
1425 
1426 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1427 
1428 // User-level Monitor/Mwait
1429 #if KMP_HAVE_UMWAIT
1430 // We always try for UMWAIT first
1431 #if KMP_HAVE_WAITPKG_INTRINSICS
1432 #if KMP_HAVE_IMMINTRIN_H
1433 #include <immintrin.h>
1434 #elif KMP_HAVE_INTRIN_H
1435 #include <intrin.h>
1436 #endif
1437 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1438 
1439 KMP_ATTRIBUTE_TARGET_WAITPKG
1440 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1441 #if !KMP_HAVE_WAITPKG_INTRINSICS
1442  uint32_t timeHi = uint32_t(counter >> 32);
1443  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1444  char flag;
1445  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1446  "setb %0"
1447  // The "=q" restraint means any register accessible as rl
1448  // in 32-bit mode: a, b, c, and d;
1449  // in 64-bit mode: any integer register
1450  : "=q"(flag)
1451  : "a"(timeLo), "d"(timeHi), "c"(hint)
1452  :);
1453  return flag;
1454 #else
1455  return _tpause(hint, counter);
1456 #endif
1457 }
1458 KMP_ATTRIBUTE_TARGET_WAITPKG
1459 static inline void __kmp_umonitor(void *cacheline) {
1460 #if !KMP_HAVE_WAITPKG_INTRINSICS
1461  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1462  :
1463  : "a"(cacheline)
1464  :);
1465 #else
1466  _umonitor(cacheline);
1467 #endif
1468 }
1469 KMP_ATTRIBUTE_TARGET_WAITPKG
1470 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1471 #if !KMP_HAVE_WAITPKG_INTRINSICS
1472  uint32_t timeHi = uint32_t(counter >> 32);
1473  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1474  char flag;
1475  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1476  "setb %0"
1477  // The "=q" restraint means any register accessible as rl
1478  // in 32-bit mode: a, b, c, and d;
1479  // in 64-bit mode: any integer register
1480  : "=q"(flag)
1481  : "a"(timeLo), "d"(timeHi), "c"(hint)
1482  :);
1483  return flag;
1484 #else
1485  return _umwait(hint, counter);
1486 #endif
1487 }
1488 #elif KMP_HAVE_MWAIT
1489 #if KMP_OS_UNIX
1490 #include <pmmintrin.h>
1491 #else
1492 #include <intrin.h>
1493 #endif
1494 #if KMP_OS_UNIX
1495 __attribute__((target("sse3")))
1496 #endif
1497 static inline void
1498 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1499  _mm_monitor(cacheline, extensions, hints);
1500 }
1501 #if KMP_OS_UNIX
1502 __attribute__((target("sse3")))
1503 #endif
1504 static inline void
1505 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1506  _mm_mwait(extensions, hints);
1507 }
1508 #endif // KMP_HAVE_UMWAIT
1509 
1510 #if KMP_ARCH_X86
1511 extern void __kmp_x86_pause(void);
1512 #elif KMP_MIC
1513 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1514 // regression after removal of extra PAUSE from spin loops. Changing
1515 // the delay from 100 to 300 showed even better performance than double PAUSE
1516 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1517 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1518 #else
1519 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1520 #endif
1521 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1522 #elif KMP_ARCH_PPC64
1523 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1524 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1525 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1526 #define KMP_CPU_PAUSE() \
1527  do { \
1528  KMP_PPC64_PRI_LOW(); \
1529  KMP_PPC64_PRI_MED(); \
1530  KMP_PPC64_PRI_LOC_MB(); \
1531  } while (0)
1532 #else
1533 #define KMP_CPU_PAUSE() /* nothing to do */
1534 #endif
1535 
1536 #define KMP_INIT_YIELD(count) \
1537  { (count) = __kmp_yield_init; }
1538 
1539 #define KMP_INIT_BACKOFF(time) \
1540  { (time) = __kmp_pause_init; }
1541 
1542 #define KMP_OVERSUBSCRIBED \
1543  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1544 
1545 #define KMP_TRY_YIELD \
1546  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1547 
1548 #define KMP_TRY_YIELD_OVERSUB \
1549  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1550 
1551 #define KMP_YIELD(cond) \
1552  { \
1553  KMP_CPU_PAUSE(); \
1554  if ((cond) && (KMP_TRY_YIELD)) \
1555  __kmp_yield(); \
1556  }
1557 
1558 #define KMP_YIELD_OVERSUB() \
1559  { \
1560  KMP_CPU_PAUSE(); \
1561  if ((KMP_TRY_YIELD_OVERSUB)) \
1562  __kmp_yield(); \
1563  }
1564 
1565 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1566 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1567 #define KMP_YIELD_SPIN(count) \
1568  { \
1569  KMP_CPU_PAUSE(); \
1570  if (KMP_TRY_YIELD) { \
1571  (count) -= 2; \
1572  if (!(count)) { \
1573  __kmp_yield(); \
1574  (count) = __kmp_yield_next; \
1575  } \
1576  } \
1577  }
1578 
1579 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1580 // (C0.2) state, which improves performance of other SMT threads on the same
1581 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1582 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1583 // available, fall back to the regular CPU pause and yield combination.
1584 #if KMP_HAVE_UMWAIT
1585 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1586 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1587  { \
1588  if (__kmp_tpause_enabled) { \
1589  if (KMP_OVERSUBSCRIBED) { \
1590  __kmp_tpause(0, (time)); \
1591  } else { \
1592  __kmp_tpause(__kmp_tpause_hint, (time)); \
1593  } \
1594  (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1595  } else { \
1596  KMP_CPU_PAUSE(); \
1597  if ((KMP_TRY_YIELD_OVERSUB)) { \
1598  __kmp_yield(); \
1599  } else if (__kmp_use_yield == 1) { \
1600  (count) -= 2; \
1601  if (!(count)) { \
1602  __kmp_yield(); \
1603  (count) = __kmp_yield_next; \
1604  } \
1605  } \
1606  } \
1607  }
1608 #else
1609 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1610  { \
1611  KMP_CPU_PAUSE(); \
1612  if ((KMP_TRY_YIELD_OVERSUB)) \
1613  __kmp_yield(); \
1614  else if (__kmp_use_yield == 1) { \
1615  (count) -= 2; \
1616  if (!(count)) { \
1617  __kmp_yield(); \
1618  (count) = __kmp_yield_next; \
1619  } \
1620  } \
1621  }
1622 #endif // KMP_HAVE_UMWAIT
1623 
1624 /* ------------------------------------------------------------------------ */
1625 /* Support datatypes for the orphaned construct nesting checks. */
1626 /* ------------------------------------------------------------------------ */
1627 
1628 /* When adding to this enum, add its corresponding string in cons_text_c[]
1629  * array in kmp_error.cpp */
1630 enum cons_type {
1631  ct_none,
1632  ct_parallel,
1633  ct_pdo,
1634  ct_pdo_ordered,
1635  ct_psections,
1636  ct_psingle,
1637  ct_critical,
1638  ct_ordered_in_parallel,
1639  ct_ordered_in_pdo,
1640  ct_master,
1641  ct_reduce,
1642  ct_barrier,
1643  ct_masked
1644 };
1645 
1646 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1647 
1648 struct cons_data {
1649  ident_t const *ident;
1650  enum cons_type type;
1651  int prev;
1652  kmp_user_lock_p
1653  name; /* address exclusively for critical section name comparison */
1654 };
1655 
1656 struct cons_header {
1657  int p_top, w_top, s_top;
1658  int stack_size, stack_top;
1659  struct cons_data *stack_data;
1660 };
1661 
1662 struct kmp_region_info {
1663  char *text;
1664  int offset[KMP_MAX_FIELDS];
1665  int length[KMP_MAX_FIELDS];
1666 };
1667 
1668 /* ---------------------------------------------------------------------- */
1669 /* ---------------------------------------------------------------------- */
1670 
1671 #if KMP_OS_WINDOWS
1672 typedef HANDLE kmp_thread_t;
1673 typedef DWORD kmp_key_t;
1674 #endif /* KMP_OS_WINDOWS */
1675 
1676 #if KMP_OS_UNIX
1677 typedef pthread_t kmp_thread_t;
1678 typedef pthread_key_t kmp_key_t;
1679 #endif
1680 
1681 extern kmp_key_t __kmp_gtid_threadprivate_key;
1682 
1683 typedef struct kmp_sys_info {
1684  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1685  long minflt; /* the number of page faults serviced without any I/O */
1686  long majflt; /* the number of page faults serviced that required I/O */
1687  long nswap; /* the number of times a process was "swapped" out of memory */
1688  long inblock; /* the number of times the file system had to perform input */
1689  long oublock; /* the number of times the file system had to perform output */
1690  long nvcsw; /* the number of times a context switch was voluntarily */
1691  long nivcsw; /* the number of times a context switch was forced */
1692 } kmp_sys_info_t;
1693 
1694 #if USE_ITT_BUILD
1695 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1696 // required type here. Later we will check the type meets requirements.
1697 typedef int kmp_itt_mark_t;
1698 #define KMP_ITT_DEBUG 0
1699 #endif /* USE_ITT_BUILD */
1700 
1701 typedef kmp_int32 kmp_critical_name[8];
1702 
1712 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1713 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1714  ...);
1715 
1720 /* ---------------------------------------------------------------------------
1721  */
1722 /* Threadprivate initialization/finalization function declarations */
1723 
1724 /* for non-array objects: __kmpc_threadprivate_register() */
1725 
1730 typedef void *(*kmpc_ctor)(void *);
1731 
1736 typedef void (*kmpc_dtor)(
1737  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1738  compiler */
1743 typedef void *(*kmpc_cctor)(void *, void *);
1744 
1745 /* for array objects: __kmpc_threadprivate_register_vec() */
1746 /* First arg: "this" pointer */
1747 /* Last arg: number of array elements */
1753 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1759 typedef void (*kmpc_dtor_vec)(void *, size_t);
1765 typedef void *(*kmpc_cctor_vec)(void *, void *,
1766  size_t); /* function unused by compiler */
1767 
1772 /* keeps tracked of threadprivate cache allocations for cleanup later */
1773 typedef struct kmp_cached_addr {
1774  void **addr; /* address of allocated cache */
1775  void ***compiler_cache; /* pointer to compiler's cache */
1776  void *data; /* pointer to global data */
1777  struct kmp_cached_addr *next; /* pointer to next cached address */
1778 } kmp_cached_addr_t;
1779 
1780 struct private_data {
1781  struct private_data *next; /* The next descriptor in the list */
1782  void *data; /* The data buffer for this descriptor */
1783  int more; /* The repeat count for this descriptor */
1784  size_t size; /* The data size for this descriptor */
1785 };
1786 
1787 struct private_common {
1788  struct private_common *next;
1789  struct private_common *link;
1790  void *gbl_addr;
1791  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1792  size_t cmn_size;
1793 };
1794 
1795 struct shared_common {
1796  struct shared_common *next;
1797  struct private_data *pod_init;
1798  void *obj_init;
1799  void *gbl_addr;
1800  union {
1801  kmpc_ctor ctor;
1802  kmpc_ctor_vec ctorv;
1803  } ct;
1804  union {
1805  kmpc_cctor cctor;
1806  kmpc_cctor_vec cctorv;
1807  } cct;
1808  union {
1809  kmpc_dtor dtor;
1810  kmpc_dtor_vec dtorv;
1811  } dt;
1812  size_t vec_len;
1813  int is_vec;
1814  size_t cmn_size;
1815 };
1816 
1817 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1818 #define KMP_HASH_TABLE_SIZE \
1819  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1820 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1821 #define KMP_HASH(x) \
1822  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1823 
1824 struct common_table {
1825  struct private_common *data[KMP_HASH_TABLE_SIZE];
1826 };
1827 
1828 struct shared_table {
1829  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1830 };
1831 
1832 /* ------------------------------------------------------------------------ */
1833 
1834 #if KMP_USE_HIER_SCHED
1835 // Shared barrier data that exists inside a single unit of the scheduling
1836 // hierarchy
1837 typedef struct kmp_hier_private_bdata_t {
1838  kmp_int32 num_active;
1839  kmp_uint64 index;
1840  kmp_uint64 wait_val[2];
1841 } kmp_hier_private_bdata_t;
1842 #endif
1843 
1844 typedef struct kmp_sched_flags {
1845  unsigned ordered : 1;
1846  unsigned nomerge : 1;
1847  unsigned contains_last : 1;
1848 #if KMP_USE_HIER_SCHED
1849  unsigned use_hier : 1;
1850  unsigned unused : 28;
1851 #else
1852  unsigned unused : 29;
1853 #endif
1854 } kmp_sched_flags_t;
1855 
1856 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1857 
1858 #if KMP_STATIC_STEAL_ENABLED
1859 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1860  kmp_int32 count;
1861  kmp_int32 ub;
1862  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1863  kmp_int32 lb;
1864  kmp_int32 st;
1865  kmp_int32 tc;
1866  kmp_lock_t *steal_lock; // lock used for chunk stealing
1867  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1868  // a) parm3 is properly aligned and
1869  // b) all parm1-4 are on the same cache line.
1870  // Because of parm1-4 are used together, performance seems to be better
1871  // if they are on the same cache line (not measured though).
1872 
1873  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1874  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1875  kmp_int32 parm2; // make no real change at least while padding is off.
1876  kmp_int32 parm3;
1877  kmp_int32 parm4;
1878  };
1879 
1880  kmp_uint32 ordered_lower;
1881  kmp_uint32 ordered_upper;
1882 #if KMP_OS_WINDOWS
1883  kmp_int32 last_upper;
1884 #endif /* KMP_OS_WINDOWS */
1885 } dispatch_private_info32_t;
1886 
1887 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1888  kmp_int64 count; // current chunk number for static & static-steal scheduling
1889  kmp_int64 ub; /* upper-bound */
1890  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1891  kmp_int64 lb; /* lower-bound */
1892  kmp_int64 st; /* stride */
1893  kmp_int64 tc; /* trip count (number of iterations) */
1894  kmp_lock_t *steal_lock; // lock used for chunk stealing
1895  /* parm[1-4] are used in different ways by different scheduling algorithms */
1896 
1897  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1898  // a) parm3 is properly aligned and
1899  // b) all parm1-4 are in the same cache line.
1900  // Because of parm1-4 are used together, performance seems to be better
1901  // if they are in the same line (not measured though).
1902 
1903  struct KMP_ALIGN(32) {
1904  kmp_int64 parm1;
1905  kmp_int64 parm2;
1906  kmp_int64 parm3;
1907  kmp_int64 parm4;
1908  };
1909 
1910  kmp_uint64 ordered_lower;
1911  kmp_uint64 ordered_upper;
1912 #if KMP_OS_WINDOWS
1913  kmp_int64 last_upper;
1914 #endif /* KMP_OS_WINDOWS */
1915 } dispatch_private_info64_t;
1916 #else /* KMP_STATIC_STEAL_ENABLED */
1917 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1918  kmp_int32 lb;
1919  kmp_int32 ub;
1920  kmp_int32 st;
1921  kmp_int32 tc;
1922 
1923  kmp_int32 parm1;
1924  kmp_int32 parm2;
1925  kmp_int32 parm3;
1926  kmp_int32 parm4;
1927 
1928  kmp_int32 count;
1929 
1930  kmp_uint32 ordered_lower;
1931  kmp_uint32 ordered_upper;
1932 #if KMP_OS_WINDOWS
1933  kmp_int32 last_upper;
1934 #endif /* KMP_OS_WINDOWS */
1935 } dispatch_private_info32_t;
1936 
1937 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1938  kmp_int64 lb; /* lower-bound */
1939  kmp_int64 ub; /* upper-bound */
1940  kmp_int64 st; /* stride */
1941  kmp_int64 tc; /* trip count (number of iterations) */
1942 
1943  /* parm[1-4] are used in different ways by different scheduling algorithms */
1944  kmp_int64 parm1;
1945  kmp_int64 parm2;
1946  kmp_int64 parm3;
1947  kmp_int64 parm4;
1948 
1949  kmp_int64 count; /* current chunk number for static scheduling */
1950 
1951  kmp_uint64 ordered_lower;
1952  kmp_uint64 ordered_upper;
1953 #if KMP_OS_WINDOWS
1954  kmp_int64 last_upper;
1955 #endif /* KMP_OS_WINDOWS */
1956 } dispatch_private_info64_t;
1957 #endif /* KMP_STATIC_STEAL_ENABLED */
1958 
1959 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1960  union private_info {
1961  dispatch_private_info32_t p32;
1962  dispatch_private_info64_t p64;
1963  } u;
1964  enum sched_type schedule; /* scheduling algorithm */
1965  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1966  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1967  kmp_int32 ordered_bumped;
1968  // Stack of buffers for nest of serial regions
1969  struct dispatch_private_info *next;
1970  kmp_int32 type_size; /* the size of types in private_info */
1971 #if KMP_USE_HIER_SCHED
1972  kmp_int32 hier_id;
1973  void *parent; /* hierarchical scheduling parent pointer */
1974 #endif
1975  enum cons_type pushed_ws;
1976 } dispatch_private_info_t;
1977 
1978 typedef struct dispatch_shared_info32 {
1979  /* chunk index under dynamic, number of idle threads under static-steal;
1980  iteration index otherwise */
1981  volatile kmp_uint32 iteration;
1982  volatile kmp_int32 num_done;
1983  volatile kmp_uint32 ordered_iteration;
1984  // Dummy to retain the structure size after making ordered_iteration scalar
1985  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1986 } dispatch_shared_info32_t;
1987 
1988 typedef struct dispatch_shared_info64 {
1989  /* chunk index under dynamic, number of idle threads under static-steal;
1990  iteration index otherwise */
1991  volatile kmp_uint64 iteration;
1992  volatile kmp_int64 num_done;
1993  volatile kmp_uint64 ordered_iteration;
1994  // Dummy to retain the structure size after making ordered_iteration scalar
1995  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1996 } dispatch_shared_info64_t;
1997 
1998 typedef struct dispatch_shared_info {
1999  union shared_info {
2000  dispatch_shared_info32_t s32;
2001  dispatch_shared_info64_t s64;
2002  } u;
2003  volatile kmp_uint32 buffer_index;
2004  volatile kmp_int32 doacross_buf_idx; // teamwise index
2005  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2006  kmp_int32 doacross_num_done; // count finished threads
2007 #if KMP_USE_HIER_SCHED
2008  void *hier;
2009 #endif
2010 #if KMP_USE_HWLOC
2011  // When linking with libhwloc, the ORDERED EPCC test slows down on big
2012  // machines (> 48 cores). Performance analysis showed that a cache thrash
2013  // was occurring and this padding helps alleviate the problem.
2014  char padding[64];
2015 #endif
2016 } dispatch_shared_info_t;
2017 
2018 typedef struct kmp_disp {
2019  /* Vector for ORDERED SECTION */
2020  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2021  /* Vector for END ORDERED SECTION */
2022  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2023 
2024  dispatch_shared_info_t *th_dispatch_sh_current;
2025  dispatch_private_info_t *th_dispatch_pr_current;
2026 
2027  dispatch_private_info_t *th_disp_buffer;
2028  kmp_uint32 th_disp_index;
2029  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2030  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2031  kmp_int64 *th_doacross_info; // info on loop bounds
2032 #if KMP_USE_INTERNODE_ALIGNMENT
2033  char more_padding[INTERNODE_CACHE_LINE];
2034 #endif
2035 } kmp_disp_t;
2036 
2037 /* ------------------------------------------------------------------------ */
2038 /* Barrier stuff */
2039 
2040 /* constants for barrier state update */
2041 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2042 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2043 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2044 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2045 
2046 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2047 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2048 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2049 
2050 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2051 #error "Barrier sleep bit must be smaller than barrier bump bit"
2052 #endif
2053 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2054 #error "Barrier unused bit must be smaller than barrier bump bit"
2055 #endif
2056 
2057 // Constants for release barrier wait state: currently, hierarchical only
2058 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2059 #define KMP_BARRIER_OWN_FLAG \
2060  1 // Normal state; worker waiting on own b_go flag in release
2061 #define KMP_BARRIER_PARENT_FLAG \
2062  2 // Special state; worker waiting on parent's b_go flag in release
2063 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2064  3 // Special state; tells worker to shift from parent to own b_go
2065 #define KMP_BARRIER_SWITCHING \
2066  4 // Special state; worker resets appropriate flag on wake-up
2067 
2068 #define KMP_NOT_SAFE_TO_REAP \
2069  0 // Thread th_reap_state: not safe to reap (tasking)
2070 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2071 
2072 // The flag_type describes the storage used for the flag.
2073 enum flag_type {
2074  flag32,
2075  flag64,
2076  atomic_flag64,
2077  flag_oncore,
2078  flag_unset
2079 };
2080 
2081 enum barrier_type {
2082  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2083  barriers if enabled) */
2084  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2085 #if KMP_FAST_REDUCTION_BARRIER
2086  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2087 #endif // KMP_FAST_REDUCTION_BARRIER
2088  bs_last_barrier /* Just a placeholder to mark the end */
2089 };
2090 
2091 // to work with reduction barriers just like with plain barriers
2092 #if !KMP_FAST_REDUCTION_BARRIER
2093 #define bs_reduction_barrier bs_plain_barrier
2094 #endif // KMP_FAST_REDUCTION_BARRIER
2095 
2096 typedef enum kmp_bar_pat { /* Barrier communication patterns */
2097  bp_linear_bar =
2098  0, /* Single level (degenerate) tree */
2099  bp_tree_bar =
2100  1, /* Balanced tree with branching factor 2^n */
2101  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2102  branching factor 2^n */
2103  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2104  bp_dist_bar = 4, /* Distributed barrier */
2105  bp_last_bar /* Placeholder to mark the end */
2106 } kmp_bar_pat_e;
2107 
2108 #define KMP_BARRIER_ICV_PUSH 1
2109 
2110 /* Record for holding the values of the internal controls stack records */
2111 typedef struct kmp_internal_control {
2112  int serial_nesting_level; /* corresponds to the value of the
2113  th_team_serialized field */
2114  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2115  thread) */
2116  kmp_int8
2117  bt_set; /* internal control for whether blocktime is explicitly set */
2118  int blocktime; /* internal control for blocktime */
2119 #if KMP_USE_MONITOR
2120  int bt_intervals; /* internal control for blocktime intervals */
2121 #endif
2122  int nproc; /* internal control for #threads for next parallel region (per
2123  thread) */
2124  int thread_limit; /* internal control for thread-limit-var */
2125  int task_thread_limit; /* internal control for thread-limit-var of a task*/
2126  int max_active_levels; /* internal control for max_active_levels */
2127  kmp_r_sched_t
2128  sched; /* internal control for runtime schedule {sched,chunk} pair */
2129  kmp_proc_bind_t proc_bind; /* internal control for affinity */
2130  kmp_int32 default_device; /* internal control for default device */
2131  struct kmp_internal_control *next;
2132 } kmp_internal_control_t;
2133 
2134 static inline void copy_icvs(kmp_internal_control_t *dst,
2135  kmp_internal_control_t *src) {
2136  *dst = *src;
2137 }
2138 
2139 /* Thread barrier needs volatile barrier fields */
2140 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2141  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2142  // uses of it). It is not explicitly aligned below, because we *don't* want
2143  // it to be padded -- instead, we fit b_go into the same cache line with
2144  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2145  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2146  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2147  // same NGO store
2148  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2149  KMP_ALIGN_CACHE volatile kmp_uint64
2150  b_arrived; // STATE => task reached synch point.
2151  kmp_uint32 *skip_per_level;
2152  kmp_uint32 my_level;
2153  kmp_int32 parent_tid;
2154  kmp_int32 old_tid;
2155  kmp_uint32 depth;
2156  struct kmp_bstate *parent_bar;
2157  kmp_team_t *team;
2158  kmp_uint64 leaf_state;
2159  kmp_uint32 nproc;
2160  kmp_uint8 base_leaf_kids;
2161  kmp_uint8 leaf_kids;
2162  kmp_uint8 offset;
2163  kmp_uint8 wait_flag;
2164  kmp_uint8 use_oncore_barrier;
2165 #if USE_DEBUGGER
2166  // The following field is intended for the debugger solely. Only the worker
2167  // thread itself accesses this field: the worker increases it by 1 when it
2168  // arrives to a barrier.
2169  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2170 #endif /* USE_DEBUGGER */
2171 } kmp_bstate_t;
2172 
2173 union KMP_ALIGN_CACHE kmp_barrier_union {
2174  double b_align; /* use worst case alignment */
2175  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2176  kmp_bstate_t bb;
2177 };
2178 
2179 typedef union kmp_barrier_union kmp_balign_t;
2180 
2181 /* Team barrier needs only non-volatile arrived counter */
2182 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2183  double b_align; /* use worst case alignment */
2184  char b_pad[CACHE_LINE];
2185  struct {
2186  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2187 #if USE_DEBUGGER
2188  // The following two fields are indended for the debugger solely. Only
2189  // primary thread of the team accesses these fields: the first one is
2190  // increased by 1 when the primary thread arrives to a barrier, the second
2191  // one is increased by one when all the threads arrived.
2192  kmp_uint b_master_arrived;
2193  kmp_uint b_team_arrived;
2194 #endif
2195  };
2196 };
2197 
2198 typedef union kmp_barrier_team_union kmp_balign_team_t;
2199 
2200 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2201  threads when a condition changes. This is to workaround an NPTL bug where
2202  padding was added to pthread_cond_t which caused the initialization routine
2203  to write outside of the structure if compiled on pre-NPTL threads. */
2204 #if KMP_OS_WINDOWS
2205 typedef struct kmp_win32_mutex {
2206  /* The Lock */
2207  CRITICAL_SECTION cs;
2208 } kmp_win32_mutex_t;
2209 
2210 typedef struct kmp_win32_cond {
2211  /* Count of the number of waiters. */
2212  int waiters_count_;
2213 
2214  /* Serialize access to <waiters_count_> */
2215  kmp_win32_mutex_t waiters_count_lock_;
2216 
2217  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2218  int release_count_;
2219 
2220  /* Keeps track of the current "generation" so that we don't allow */
2221  /* one thread to steal all the "releases" from the broadcast. */
2222  int wait_generation_count_;
2223 
2224  /* A manual-reset event that's used to block and release waiting threads. */
2225  HANDLE event_;
2226 } kmp_win32_cond_t;
2227 #endif
2228 
2229 #if KMP_OS_UNIX
2230 
2231 union KMP_ALIGN_CACHE kmp_cond_union {
2232  double c_align;
2233  char c_pad[CACHE_LINE];
2234  pthread_cond_t c_cond;
2235 };
2236 
2237 typedef union kmp_cond_union kmp_cond_align_t;
2238 
2239 union KMP_ALIGN_CACHE kmp_mutex_union {
2240  double m_align;
2241  char m_pad[CACHE_LINE];
2242  pthread_mutex_t m_mutex;
2243 };
2244 
2245 typedef union kmp_mutex_union kmp_mutex_align_t;
2246 
2247 #endif /* KMP_OS_UNIX */
2248 
2249 typedef struct kmp_desc_base {
2250  void *ds_stackbase;
2251  size_t ds_stacksize;
2252  int ds_stackgrow;
2253  kmp_thread_t ds_thread;
2254  volatile int ds_tid;
2255  int ds_gtid;
2256 #if KMP_OS_WINDOWS
2257  volatile int ds_alive;
2258  DWORD ds_thread_id;
2259 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2260  However, debugger support (libomp_db) cannot work with handles, because they
2261  uncomparable. For example, debugger requests info about thread with handle h.
2262  h is valid within debugger process, and meaningless within debugee process.
2263  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2264  within debugee process, but it is a *new* handle which does *not* equal to
2265  any other handle in debugee... The only way to compare handles is convert
2266  them to system-wide ids. GetThreadId() function is available only in
2267  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2268  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2269  thread id by call to GetCurrentThreadId() from within the thread and save it
2270  to let libomp_db identify threads. */
2271 #endif /* KMP_OS_WINDOWS */
2272 } kmp_desc_base_t;
2273 
2274 typedef union KMP_ALIGN_CACHE kmp_desc {
2275  double ds_align; /* use worst case alignment */
2276  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2277  kmp_desc_base_t ds;
2278 } kmp_desc_t;
2279 
2280 typedef struct kmp_local {
2281  volatile int this_construct; /* count of single's encountered by thread */
2282  void *reduce_data;
2283 #if KMP_USE_BGET
2284  void *bget_data;
2285  void *bget_list;
2286 #if !USE_CMP_XCHG_FOR_BGET
2287 #ifdef USE_QUEUING_LOCK_FOR_BGET
2288  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2289 #else
2290  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2291 // bootstrap lock so we can use it at library
2292 // shutdown.
2293 #endif /* USE_LOCK_FOR_BGET */
2294 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2295 #endif /* KMP_USE_BGET */
2296 
2297  PACKED_REDUCTION_METHOD_T
2298  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2299  __kmpc_end_reduce*() */
2300 
2301 } kmp_local_t;
2302 
2303 #define KMP_CHECK_UPDATE(a, b) \
2304  if ((a) != (b)) \
2305  (a) = (b)
2306 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2307  if ((a) != (b)) \
2308  TCW_SYNC_PTR((a), (b))
2309 
2310 #define get__blocktime(xteam, xtid) \
2311  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2312 #define get__bt_set(xteam, xtid) \
2313  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2314 #if KMP_USE_MONITOR
2315 #define get__bt_intervals(xteam, xtid) \
2316  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2317 #endif
2318 
2319 #define get__dynamic_2(xteam, xtid) \
2320  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2321 #define get__nproc_2(xteam, xtid) \
2322  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2323 #define get__sched_2(xteam, xtid) \
2324  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2325 
2326 #define set__blocktime_team(xteam, xtid, xval) \
2327  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2328  (xval))
2329 
2330 #if KMP_USE_MONITOR
2331 #define set__bt_intervals_team(xteam, xtid, xval) \
2332  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2333  (xval))
2334 #endif
2335 
2336 #define set__bt_set_team(xteam, xtid, xval) \
2337  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2338 
2339 #define set__dynamic(xthread, xval) \
2340  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2341 #define get__dynamic(xthread) \
2342  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2343 
2344 #define set__nproc(xthread, xval) \
2345  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2346 
2347 #define set__thread_limit(xthread, xval) \
2348  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2349 
2350 #define set__max_active_levels(xthread, xval) \
2351  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2352 
2353 #define get__max_active_levels(xthread) \
2354  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2355 
2356 #define set__sched(xthread, xval) \
2357  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2358 
2359 #define set__proc_bind(xthread, xval) \
2360  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2361 #define get__proc_bind(xthread) \
2362  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2363 
2364 // OpenMP tasking data structures
2365 
2366 typedef enum kmp_tasking_mode {
2367  tskm_immediate_exec = 0,
2368  tskm_extra_barrier = 1,
2369  tskm_task_teams = 2,
2370  tskm_max = 2
2371 } kmp_tasking_mode_t;
2372 
2373 extern kmp_tasking_mode_t
2374  __kmp_tasking_mode; /* determines how/when to execute tasks */
2375 extern int __kmp_task_stealing_constraint;
2376 extern int __kmp_enable_task_throttling;
2377 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2378 // specified, defaults to 0 otherwise
2379 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2380 extern kmp_int32 __kmp_max_task_priority;
2381 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2382 extern kmp_uint64 __kmp_taskloop_min_tasks;
2383 
2384 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2385  taskdata first */
2386 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2387 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2388 
2389 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2390 // were spawned and queued since the previous barrier release.
2391 #define KMP_TASKING_ENABLED(task_team) \
2392  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2393 
2400 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2401 
2402 typedef union kmp_cmplrdata {
2403  kmp_int32 priority;
2404  kmp_routine_entry_t
2405  destructors; /* pointer to function to invoke deconstructors of
2406  firstprivate C++ objects */
2407  /* future data */
2408 } kmp_cmplrdata_t;
2409 
2410 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2413 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2414  void *shareds;
2415  kmp_routine_entry_t
2416  routine;
2417  kmp_int32 part_id;
2418  kmp_cmplrdata_t
2419  data1; /* Two known optional additions: destructors and priority */
2420  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2421  /* future data */
2422  /* private vars */
2423 } kmp_task_t;
2424 
2429 typedef struct kmp_taskgroup {
2430  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2431  std::atomic<kmp_int32>
2432  cancel_request; // request for cancellation of this taskgroup
2433  struct kmp_taskgroup *parent; // parent taskgroup
2434  // Block of data to perform task reduction
2435  void *reduce_data; // reduction related info
2436  kmp_int32 reduce_num_data; // number of data items to reduce
2437  uintptr_t *gomp_data; // gomp reduction data
2438 } kmp_taskgroup_t;
2439 
2440 // forward declarations
2441 typedef union kmp_depnode kmp_depnode_t;
2442 typedef struct kmp_depnode_list kmp_depnode_list_t;
2443 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2444 
2445 // macros for checking dep flag as an integer
2446 #define KMP_DEP_IN 0x1
2447 #define KMP_DEP_OUT 0x2
2448 #define KMP_DEP_INOUT 0x3
2449 #define KMP_DEP_MTX 0x4
2450 #define KMP_DEP_SET 0x8
2451 #define KMP_DEP_ALL 0x80
2452 // Compiler sends us this info:
2453 typedef struct kmp_depend_info {
2454  kmp_intptr_t base_addr;
2455  size_t len;
2456  union {
2457  kmp_uint8 flag; // flag as an unsigned char
2458  struct { // flag as a set of 8 bits
2459  unsigned in : 1;
2460  unsigned out : 1;
2461  unsigned mtx : 1;
2462  unsigned set : 1;
2463  unsigned unused : 3;
2464  unsigned all : 1;
2465  } flags;
2466  };
2467 } kmp_depend_info_t;
2468 
2469 // Internal structures to work with task dependencies:
2470 struct kmp_depnode_list {
2471  kmp_depnode_t *node;
2472  kmp_depnode_list_t *next;
2473 };
2474 
2475 // Max number of mutexinoutset dependencies per node
2476 #define MAX_MTX_DEPS 4
2477 
2478 typedef struct kmp_base_depnode {
2479  kmp_depnode_list_t *successors; /* used under lock */
2480  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2481  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2482  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2483  kmp_lock_t lock; /* guards shared fields: task, successors */
2484 #if KMP_SUPPORT_GRAPH_OUTPUT
2485  kmp_uint32 id;
2486 #endif
2487  std::atomic<kmp_int32> npredecessors;
2488  std::atomic<kmp_int32> nrefs;
2489 } kmp_base_depnode_t;
2490 
2491 union KMP_ALIGN_CACHE kmp_depnode {
2492  double dn_align; /* use worst case alignment */
2493  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2494  kmp_base_depnode_t dn;
2495 };
2496 
2497 struct kmp_dephash_entry {
2498  kmp_intptr_t addr;
2499  kmp_depnode_t *last_out;
2500  kmp_depnode_list_t *last_set;
2501  kmp_depnode_list_t *prev_set;
2502  kmp_uint8 last_flag;
2503  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2504  kmp_dephash_entry_t *next_in_bucket;
2505 };
2506 
2507 typedef struct kmp_dephash {
2508  kmp_dephash_entry_t **buckets;
2509  size_t size;
2510  kmp_depnode_t *last_all;
2511  size_t generation;
2512  kmp_uint32 nelements;
2513  kmp_uint32 nconflicts;
2514 } kmp_dephash_t;
2515 
2516 typedef struct kmp_task_affinity_info {
2517  kmp_intptr_t base_addr;
2518  size_t len;
2519  struct {
2520  bool flag1 : 1;
2521  bool flag2 : 1;
2522  kmp_int32 reserved : 30;
2523  } flags;
2524 } kmp_task_affinity_info_t;
2525 
2526 typedef enum kmp_event_type_t {
2527  KMP_EVENT_UNINITIALIZED = 0,
2528  KMP_EVENT_ALLOW_COMPLETION = 1
2529 } kmp_event_type_t;
2530 
2531 typedef struct {
2532  kmp_event_type_t type;
2533  kmp_tas_lock_t lock;
2534  union {
2535  kmp_task_t *task;
2536  } ed;
2537 } kmp_event_t;
2538 
2539 #if OMPX_TASKGRAPH
2540 // Initial number of allocated nodes while recording
2541 #define INIT_MAPSIZE 50
2542 
2543 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2544  unsigned nowait : 1;
2545  unsigned re_record : 1;
2546  unsigned reserved : 30;
2547 } kmp_taskgraph_flags_t;
2548 
2550 typedef struct kmp_node_info {
2551  kmp_task_t *task; // Pointer to the actual task
2552  kmp_int32 *successors; // Array of the succesors ids
2553  kmp_int32 nsuccessors; // Number of succesors of the node
2554  std::atomic<kmp_int32>
2555  npredecessors_counter; // Number of predessors on the fly
2556  kmp_int32 npredecessors; // Total number of predecessors
2557  kmp_int32 successors_size; // Number of allocated succesors ids
2558  kmp_taskdata_t *parent_task; // Parent implicit task
2559 } kmp_node_info_t;
2560 
2562 typedef enum kmp_tdg_status {
2563  KMP_TDG_NONE = 0,
2564  KMP_TDG_RECORDING = 1,
2565  KMP_TDG_READY = 2
2566 } kmp_tdg_status_t;
2567 
2569 typedef struct kmp_tdg_info {
2570  kmp_int32 tdg_id; // Unique idenfifier of the TDG
2571  kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2572  kmp_int32 map_size; // Number of allocated TDG nodes
2573  kmp_int32 num_roots; // Number of roots tasks int the TDG
2574  kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2575  kmp_node_info_t *record_map; // Array of TDG nodes
2576  kmp_tdg_status_t tdg_status =
2577  KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2578  std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2579  kmp_bootstrap_lock_t
2580  graph_lock; // Protect graph attributes when updated via taskloop_recur
2581  // Taskloop reduction related
2582  void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2583  // __kmpc_taskred_init
2584  kmp_int32 rec_num_taskred;
2585 } kmp_tdg_info_t;
2586 
2587 extern int __kmp_tdg_dot;
2588 extern kmp_int32 __kmp_max_tdgs;
2589 extern kmp_tdg_info_t **__kmp_global_tdgs;
2590 extern kmp_int32 __kmp_curr_tdg_idx;
2591 extern kmp_int32 __kmp_successors_size;
2592 extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2593 extern kmp_int32 __kmp_num_tdg;
2594 #endif
2595 
2596 #ifdef BUILD_TIED_TASK_STACK
2597 
2598 /* Tied Task stack definitions */
2599 typedef struct kmp_stack_block {
2600  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2601  struct kmp_stack_block *sb_next;
2602  struct kmp_stack_block *sb_prev;
2603 } kmp_stack_block_t;
2604 
2605 typedef struct kmp_task_stack {
2606  kmp_stack_block_t ts_first_block; // first block of stack entries
2607  kmp_taskdata_t **ts_top; // pointer to the top of stack
2608  kmp_int32 ts_entries; // number of entries on the stack
2609 } kmp_task_stack_t;
2610 
2611 #endif // BUILD_TIED_TASK_STACK
2612 
2613 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2614  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2615  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2616  unsigned final : 1; /* task is final(1) so execute immediately */
2617  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2618  code path */
2619  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2620  invoke destructors from the runtime */
2621  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2622  context of the RTL) */
2623  unsigned priority_specified : 1; /* set if the compiler provides priority
2624  setting for the task */
2625  unsigned detachable : 1; /* 1 == can detach */
2626  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2627  unsigned reserved : 8; /* reserved for compiler use */
2628 
2629  /* Library flags */ /* Total library flags must be 16 bits */
2630  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2631  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2632  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2633  // (1) or may be deferred (0)
2634  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2635  // (0) [>= 2 threads]
2636  /* If either team_serial or tasking_ser is set, task team may be NULL */
2637  /* Task State Flags: */
2638  unsigned started : 1; /* 1==started, 0==not started */
2639  unsigned executing : 1; /* 1==executing, 0==not executing */
2640  unsigned complete : 1; /* 1==complete, 0==not complete */
2641  unsigned freed : 1; /* 1==freed, 0==allocated */
2642  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2643 #if OMPX_TASKGRAPH
2644  unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2645  unsigned reserved31 : 6; /* reserved for library use */
2646 #else
2647  unsigned reserved31 : 7; /* reserved for library use */
2648 #endif
2649 
2650 } kmp_tasking_flags_t;
2651 
2652 typedef struct kmp_target_data {
2653  void *async_handle; // libomptarget async handle for task completion query
2654 } kmp_target_data_t;
2655 
2656 struct kmp_taskdata { /* aligned during dynamic allocation */
2657  kmp_int32 td_task_id; /* id, assigned by debugger */
2658  kmp_tasking_flags_t td_flags; /* task flags */
2659  kmp_team_t *td_team; /* team for this task */
2660  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2661  /* Currently not used except for perhaps IDB */
2662  kmp_taskdata_t *td_parent; /* parent task */
2663  kmp_int32 td_level; /* task nesting level */
2664  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2665  ident_t *td_ident; /* task identifier */
2666  // Taskwait data.
2667  ident_t *td_taskwait_ident;
2668  kmp_uint32 td_taskwait_counter;
2669  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2670  KMP_ALIGN_CACHE kmp_internal_control_t
2671  td_icvs; /* Internal control variables for the task */
2672  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2673  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2674  deallocated */
2675  std::atomic<kmp_int32>
2676  td_incomplete_child_tasks; /* Child tasks not yet complete */
2677  kmp_taskgroup_t
2678  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2679  kmp_dephash_t
2680  *td_dephash; // Dependencies for children tasks are tracked from here
2681  kmp_depnode_t
2682  *td_depnode; // Pointer to graph node if this task has dependencies
2683  kmp_task_team_t *td_task_team;
2684  size_t td_size_alloc; // Size of task structure, including shareds etc.
2685 #if defined(KMP_GOMP_COMPAT)
2686  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2687  kmp_int32 td_size_loop_bounds;
2688 #endif
2689  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2690 #if defined(KMP_GOMP_COMPAT)
2691  // GOMP sends in a copy function for copy constructors
2692  void (*td_copy_func)(void *, void *);
2693 #endif
2694  kmp_event_t td_allow_completion_event;
2695 #if OMPT_SUPPORT
2696  ompt_task_info_t ompt_task_info;
2697 #endif
2698 #if OMPX_TASKGRAPH
2699  bool is_taskgraph = 0; // whether the task is within a TDG
2700  kmp_tdg_info_t *tdg; // used to associate task with a TDG
2701 #endif
2702  kmp_target_data_t td_target_data;
2703 }; // struct kmp_taskdata
2704 
2705 // Make sure padding above worked
2706 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2707 
2708 // Data for task team but per thread
2709 typedef struct kmp_base_thread_data {
2710  kmp_info_p *td_thr; // Pointer back to thread info
2711  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2712  // queued?
2713  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2714  kmp_taskdata_t *
2715  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2716  kmp_int32 td_deque_size; // Size of deck
2717  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2718  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2719  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2720  // GEH: shouldn't this be volatile since used in while-spin?
2721  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2722 #ifdef BUILD_TIED_TASK_STACK
2723  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2724 // scheduling constraint
2725 #endif // BUILD_TIED_TASK_STACK
2726 } kmp_base_thread_data_t;
2727 
2728 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2729 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2730 
2731 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2732 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2733 
2734 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2735  kmp_base_thread_data_t td;
2736  double td_align; /* use worst case alignment */
2737  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2738 } kmp_thread_data_t;
2739 
2740 typedef struct kmp_task_pri {
2741  kmp_thread_data_t td;
2742  kmp_int32 priority;
2743  kmp_task_pri *next;
2744 } kmp_task_pri_t;
2745 
2746 // Data for task teams which are used when tasking is enabled for the team
2747 typedef struct kmp_base_task_team {
2748  kmp_bootstrap_lock_t
2749  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2750  /* must be bootstrap lock since used at library shutdown*/
2751 
2752  // TODO: check performance vs kmp_tas_lock_t
2753  kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2754  kmp_task_pri_t *tt_task_pri_list;
2755 
2756  kmp_task_team_t *tt_next; /* For linking the task team free list */
2757  kmp_thread_data_t
2758  *tt_threads_data; /* Array of per-thread structures for task team */
2759  /* Data survives task team deallocation */
2760  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2761  executing this team? */
2762  /* TRUE means tt_threads_data is set up and initialized */
2763  kmp_int32 tt_nproc; /* #threads in team */
2764  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2765  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2766  kmp_int32 tt_untied_task_encountered;
2767  std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2768  // There is hidden helper thread encountered in this task team so that we must
2769  // wait when waiting on task team
2770  kmp_int32 tt_hidden_helper_task_encountered;
2771 
2772  KMP_ALIGN_CACHE
2773  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2774 
2775  KMP_ALIGN_CACHE
2776  volatile kmp_uint32
2777  tt_active; /* is the team still actively executing tasks */
2778 } kmp_base_task_team_t;
2779 
2780 union KMP_ALIGN_CACHE kmp_task_team {
2781  kmp_base_task_team_t tt;
2782  double tt_align; /* use worst case alignment */
2783  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2784 };
2785 
2786 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2787 // Free lists keep same-size free memory slots for fast memory allocation
2788 // routines
2789 typedef struct kmp_free_list {
2790  void *th_free_list_self; // Self-allocated tasks free list
2791  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2792  // threads
2793  void *th_free_list_other; // Non-self free list (to be returned to owner's
2794  // sync list)
2795 } kmp_free_list_t;
2796 #endif
2797 #if KMP_NESTED_HOT_TEAMS
2798 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2799 // are not put in teams pool, and they don't put threads in threads pool.
2800 typedef struct kmp_hot_team_ptr {
2801  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2802  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2803 } kmp_hot_team_ptr_t;
2804 #endif
2805 typedef struct kmp_teams_size {
2806  kmp_int32 nteams; // number of teams in a league
2807  kmp_int32 nth; // number of threads in each team of the league
2808 } kmp_teams_size_t;
2809 
2810 // This struct stores a thread that acts as a "root" for a contention
2811 // group. Contention groups are rooted at kmp_root threads, but also at
2812 // each primary thread of each team created in the teams construct.
2813 // This struct therefore also stores a thread_limit associated with
2814 // that contention group, and a counter to track the number of threads
2815 // active in that contention group. Each thread has a list of these: CG
2816 // root threads have an entry in their list in which cg_root refers to
2817 // the thread itself, whereas other workers in the CG will have a
2818 // single entry where cg_root is same as the entry containing their CG
2819 // root. When a thread encounters a teams construct, it will add a new
2820 // entry to the front of its list, because it now roots a new CG.
2821 typedef struct kmp_cg_root {
2822  kmp_info_p *cg_root; // "root" thread for a contention group
2823  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2824  // thread_limit clause for teams primary threads
2825  kmp_int32 cg_thread_limit;
2826  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2827  struct kmp_cg_root *up; // pointer to higher level CG root in list
2828 } kmp_cg_root_t;
2829 
2830 // OpenMP thread data structures
2831 
2832 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2833  /* Start with the readonly data which is cache aligned and padded. This is
2834  written before the thread starts working by the primary thread. Uber
2835  masters may update themselves later. Usage does not consider serialized
2836  regions. */
2837  kmp_desc_t th_info;
2838  kmp_team_p *th_team; /* team we belong to */
2839  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2840  kmp_info_p *th_next_pool; /* next available thread in the pool */
2841  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2842  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2843 
2844  /* The following are cached from the team info structure */
2845  /* TODO use these in more places as determined to be needed via profiling */
2846  int th_team_nproc; /* number of threads in a team */
2847  kmp_info_p *th_team_master; /* the team's primary thread */
2848  int th_team_serialized; /* team is serialized */
2849  microtask_t th_teams_microtask; /* save entry address for teams construct */
2850  int th_teams_level; /* save initial level of teams construct */
2851 /* it is 0 on device but may be any on host */
2852 
2853 /* The blocktime info is copied from the team struct to the thread struct */
2854 /* at the start of a barrier, and the values stored in the team are used */
2855 /* at points in the code where the team struct is no longer guaranteed */
2856 /* to exist (from the POV of worker threads). */
2857 #if KMP_USE_MONITOR
2858  int th_team_bt_intervals;
2859  int th_team_bt_set;
2860 #else
2861  kmp_uint64 th_team_bt_intervals;
2862 #endif
2863 
2864 #if KMP_AFFINITY_SUPPORTED
2865  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2866  kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2867  kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2868 #endif
2869  omp_allocator_handle_t th_def_allocator; /* default allocator */
2870  /* The data set by the primary thread at reinit, then R/W by the worker */
2871  KMP_ALIGN_CACHE int
2872  th_set_nproc; /* if > 0, then only use this request for the next fork */
2873 #if KMP_NESTED_HOT_TEAMS
2874  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2875 #endif
2876  kmp_proc_bind_t
2877  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2878  kmp_teams_size_t
2879  th_teams_size; /* number of teams/threads in teams construct */
2880 #if KMP_AFFINITY_SUPPORTED
2881  int th_current_place; /* place currently bound to */
2882  int th_new_place; /* place to bind to in par reg */
2883  int th_first_place; /* first place in partition */
2884  int th_last_place; /* last place in partition */
2885 #endif
2886  int th_prev_level; /* previous level for affinity format */
2887  int th_prev_num_threads; /* previous num_threads for affinity format */
2888 #if USE_ITT_BUILD
2889  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2890  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2891  kmp_uint64 th_frame_time; /* frame timestamp */
2892 #endif /* USE_ITT_BUILD */
2893  kmp_local_t th_local;
2894  struct private_common *th_pri_head;
2895 
2896  /* Now the data only used by the worker (after initial allocation) */
2897  /* TODO the first serial team should actually be stored in the info_t
2898  structure. this will help reduce initial allocation overhead */
2899  KMP_ALIGN_CACHE kmp_team_p
2900  *th_serial_team; /*serialized team held in reserve*/
2901 
2902 #if OMPT_SUPPORT
2903  ompt_thread_info_t ompt_thread_info;
2904 #endif
2905 
2906  /* The following are also read by the primary thread during reinit */
2907  struct common_table *th_pri_common;
2908 
2909  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2910  /* while awaiting queuing lock acquire */
2911 
2912  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2913  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2914 
2915  ident_t *th_ident;
2916  unsigned th_x; // Random number generator data
2917  unsigned th_a; // Random number generator data
2918 
2919  /* Tasking-related data for the thread */
2920  kmp_task_team_t *th_task_team; // Task team struct
2921  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2922  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2923  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2924  // at nested levels
2925  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2926  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2927  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2928  // tasking, thus safe to reap
2929 
2930  /* More stuff for keeping track of active/sleeping threads (this part is
2931  written by the worker thread) */
2932  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2933  int th_active; // ! sleeping; 32 bits for TCR/TCW
2934  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2935  // 0 = not used in team; 1 = used in team;
2936  // 2 = transitioning to not used in team; 3 = transitioning to used in team
2937  struct cons_header *th_cons; // used for consistency check
2938 #if KMP_USE_HIER_SCHED
2939  // used for hierarchical scheduling
2940  kmp_hier_private_bdata_t *th_hier_bar_data;
2941 #endif
2942 
2943  /* Add the syncronizing data which is cache aligned and padded. */
2944  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2945 
2946  KMP_ALIGN_CACHE volatile kmp_int32
2947  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2948 
2949 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2950 #define NUM_LISTS 4
2951  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2952 // allocation routines
2953 #endif
2954 
2955 #if KMP_OS_WINDOWS
2956  kmp_win32_cond_t th_suspend_cv;
2957  kmp_win32_mutex_t th_suspend_mx;
2958  std::atomic<int> th_suspend_init;
2959 #endif
2960 #if KMP_OS_UNIX
2961  kmp_cond_align_t th_suspend_cv;
2962  kmp_mutex_align_t th_suspend_mx;
2963  std::atomic<int> th_suspend_init_count;
2964 #endif
2965 
2966 #if USE_ITT_BUILD
2967  kmp_itt_mark_t th_itt_mark_single;
2968 // alignment ???
2969 #endif /* USE_ITT_BUILD */
2970 #if KMP_STATS_ENABLED
2971  kmp_stats_list *th_stats;
2972 #endif
2973 #if KMP_OS_UNIX
2974  std::atomic<bool> th_blocking;
2975 #endif
2976  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2977 } kmp_base_info_t;
2978 
2979 typedef union KMP_ALIGN_CACHE kmp_info {
2980  double th_align; /* use worst case alignment */
2981  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2982  kmp_base_info_t th;
2983 } kmp_info_t;
2984 
2985 // OpenMP thread team data structures
2986 
2987 typedef struct kmp_base_data {
2988  volatile kmp_uint32 t_value;
2989 } kmp_base_data_t;
2990 
2991 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2992  double dt_align; /* use worst case alignment */
2993  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2994  kmp_base_data_t dt;
2995 } kmp_sleep_team_t;
2996 
2997 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2998  double dt_align; /* use worst case alignment */
2999  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3000  kmp_base_data_t dt;
3001 } kmp_ordered_team_t;
3002 
3003 typedef int (*launch_t)(int gtid);
3004 
3005 /* Minimum number of ARGV entries to malloc if necessary */
3006 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3007 
3008 // Set up how many argv pointers will fit in cache lines containing
3009 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3010 // larger value for more space between the primary write/worker read section and
3011 // read/write by all section seems to buy more performance on EPCC PARALLEL.
3012 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3013 #define KMP_INLINE_ARGV_BYTES \
3014  (4 * CACHE_LINE - \
3015  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3016  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3017  CACHE_LINE))
3018 #else
3019 #define KMP_INLINE_ARGV_BYTES \
3020  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3021 #endif
3022 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3023 
3024 typedef struct KMP_ALIGN_CACHE kmp_base_team {
3025  // Synchronization Data
3026  // ---------------------------------------------------------------------------
3027  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3028  kmp_balign_team_t t_bar[bs_last_barrier];
3029  std::atomic<int> t_construct; // count of single directive encountered by team
3030  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3031 
3032  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3033  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3034  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3035 
3036  // Primary thread only
3037  // ---------------------------------------------------------------------------
3038  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3039  int t_master_this_cons; // "this_construct" single counter of primary thread
3040  // in parent team
3041  ident_t *t_ident; // if volatile, have to change too much other crud to
3042  // volatile too
3043  kmp_team_p *t_parent; // parent team
3044  kmp_team_p *t_next_pool; // next free team in the team pool
3045  kmp_disp_t *t_dispatch; // thread's dispatch data
3046  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3047  kmp_proc_bind_t t_proc_bind; // bind type for par region
3048 #if USE_ITT_BUILD
3049  kmp_uint64 t_region_time; // region begin timestamp
3050 #endif /* USE_ITT_BUILD */
3051 
3052  // Primary thread write, workers read
3053  // --------------------------------------------------------------------------
3054  KMP_ALIGN_CACHE void **t_argv;
3055  int t_argc;
3056  int t_nproc; // number of threads in team
3057  microtask_t t_pkfn;
3058  launch_t t_invoke; // procedure to launch the microtask
3059 
3060 #if OMPT_SUPPORT
3061  ompt_team_info_t ompt_team_info;
3062  ompt_lw_taskteam_t *ompt_serialized_team_info;
3063 #endif
3064 
3065 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3066  kmp_int8 t_fp_control_saved;
3067  kmp_int8 t_pad2b;
3068  kmp_int16 t_x87_fpu_control_word; // FP control regs
3069  kmp_uint32 t_mxcsr;
3070 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3071 
3072  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3073 
3074  KMP_ALIGN_CACHE kmp_info_t **t_threads;
3075  kmp_taskdata_t
3076  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3077  int t_level; // nested parallel level
3078 
3079  KMP_ALIGN_CACHE int t_max_argc;
3080  int t_max_nproc; // max threads this team can handle (dynamically expandable)
3081  int t_serialized; // levels deep of serialized teams
3082  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3083  int t_id; // team's id, assigned by debugger.
3084  int t_active_level; // nested active parallel level
3085  kmp_r_sched_t t_sched; // run-time schedule for the team
3086 #if KMP_AFFINITY_SUPPORTED
3087  int t_first_place; // first & last place in parent thread's partition.
3088  int t_last_place; // Restore these values to primary thread after par region.
3089 #endif // KMP_AFFINITY_SUPPORTED
3090  int t_display_affinity;
3091  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3092  // omp_set_num_threads() call
3093  omp_allocator_handle_t t_def_allocator; /* default allocator */
3094 
3095 // Read/write by workers as well
3096 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3097  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3098  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3099  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3100  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3101  char dummy_padding[1024];
3102 #endif
3103  // Internal control stack for additional nested teams.
3104  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3105  // for SERIALIZED teams nested 2 or more levels deep
3106  // typed flag to store request state of cancellation
3107  std::atomic<kmp_int32> t_cancel_request;
3108  int t_master_active; // save on fork, restore on join
3109  void *t_copypriv_data; // team specific pointer to copyprivate data array
3110 #if KMP_OS_WINDOWS
3111  std::atomic<kmp_uint32> t_copyin_counter;
3112 #endif
3113 #if USE_ITT_BUILD
3114  void *t_stack_id; // team specific stack stitching id (for ittnotify)
3115 #endif /* USE_ITT_BUILD */
3116  distributedBarrier *b; // Distributed barrier data associated with team
3117 } kmp_base_team_t;
3118 
3119 union KMP_ALIGN_CACHE kmp_team {
3120  kmp_base_team_t t;
3121  double t_align; /* use worst case alignment */
3122  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3123 };
3124 
3125 typedef union KMP_ALIGN_CACHE kmp_time_global {
3126  double dt_align; /* use worst case alignment */
3127  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3128  kmp_base_data_t dt;
3129 } kmp_time_global_t;
3130 
3131 typedef struct kmp_base_global {
3132  /* cache-aligned */
3133  kmp_time_global_t g_time;
3134 
3135  /* non cache-aligned */
3136  volatile int g_abort;
3137  volatile int g_done;
3138 
3139  int g_dynamic;
3140  enum dynamic_mode g_dynamic_mode;
3141 } kmp_base_global_t;
3142 
3143 typedef union KMP_ALIGN_CACHE kmp_global {
3144  kmp_base_global_t g;
3145  double g_align; /* use worst case alignment */
3146  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3147 } kmp_global_t;
3148 
3149 typedef struct kmp_base_root {
3150  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3151  // (r_in_parallel>= 0)
3152  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3153  // the synch overhead or keeping r_active
3154  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3155  // keeps a count of active parallel regions per root
3156  std::atomic<int> r_in_parallel;
3157  // GEH: This is misnamed, should be r_active_levels
3158  kmp_team_t *r_root_team;
3159  kmp_team_t *r_hot_team;
3160  kmp_info_t *r_uber_thread;
3161  kmp_lock_t r_begin_lock;
3162  volatile int r_begin;
3163  int r_blocktime; /* blocktime for this root and descendants */
3164 #if KMP_AFFINITY_SUPPORTED
3165  int r_affinity_assigned;
3166 #endif // KMP_AFFINITY_SUPPORTED
3167 } kmp_base_root_t;
3168 
3169 typedef union KMP_ALIGN_CACHE kmp_root {
3170  kmp_base_root_t r;
3171  double r_align; /* use worst case alignment */
3172  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3173 } kmp_root_t;
3174 
3175 struct fortran_inx_info {
3176  kmp_int32 data;
3177 };
3178 
3179 // This list type exists to hold old __kmp_threads arrays so that
3180 // old references to them may complete while reallocation takes place when
3181 // expanding the array. The items in this list are kept alive until library
3182 // shutdown.
3183 typedef struct kmp_old_threads_list_t {
3184  kmp_info_t **threads;
3185  struct kmp_old_threads_list_t *next;
3186 } kmp_old_threads_list_t;
3187 
3188 /* ------------------------------------------------------------------------ */
3189 
3190 extern int __kmp_settings;
3191 extern int __kmp_duplicate_library_ok;
3192 #if USE_ITT_BUILD
3193 extern int __kmp_forkjoin_frames;
3194 extern int __kmp_forkjoin_frames_mode;
3195 #endif
3196 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3197 extern int __kmp_determ_red;
3198 
3199 #ifdef KMP_DEBUG
3200 extern int kmp_a_debug;
3201 extern int kmp_b_debug;
3202 extern int kmp_c_debug;
3203 extern int kmp_d_debug;
3204 extern int kmp_e_debug;
3205 extern int kmp_f_debug;
3206 #endif /* KMP_DEBUG */
3207 
3208 /* For debug information logging using rotating buffer */
3209 #define KMP_DEBUG_BUF_LINES_INIT 512
3210 #define KMP_DEBUG_BUF_LINES_MIN 1
3211 
3212 #define KMP_DEBUG_BUF_CHARS_INIT 128
3213 #define KMP_DEBUG_BUF_CHARS_MIN 2
3214 
3215 extern int
3216  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3217 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3218 extern int
3219  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3220 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3221  entry pointer */
3222 
3223 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3224 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3225  printed in buffer so far */
3226 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3227  recommended in warnings */
3228 /* end rotating debug buffer */
3229 
3230 #ifdef KMP_DEBUG
3231 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3232 
3233 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3234 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3235 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3236 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3237 extern int __kmp_par_range_lb;
3238 extern int __kmp_par_range_ub;
3239 #endif
3240 
3241 /* For printing out dynamic storage map for threads and teams */
3242 extern int
3243  __kmp_storage_map; /* True means print storage map for threads and teams */
3244 extern int __kmp_storage_map_verbose; /* True means storage map includes
3245  placement info */
3246 extern int __kmp_storage_map_verbose_specified;
3247 
3248 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3249 extern kmp_cpuinfo_t __kmp_cpuinfo;
3250 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3251 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3252 static inline bool __kmp_is_hybrid_cpu() { return true; }
3253 #else
3254 static inline bool __kmp_is_hybrid_cpu() { return false; }
3255 #endif
3256 
3257 extern volatile int __kmp_init_serial;
3258 extern volatile int __kmp_init_gtid;
3259 extern volatile int __kmp_init_common;
3260 extern volatile int __kmp_need_register_serial;
3261 extern volatile int __kmp_init_middle;
3262 extern volatile int __kmp_init_parallel;
3263 #if KMP_USE_MONITOR
3264 extern volatile int __kmp_init_monitor;
3265 #endif
3266 extern volatile int __kmp_init_user_locks;
3267 extern volatile int __kmp_init_hidden_helper_threads;
3268 extern int __kmp_init_counter;
3269 extern int __kmp_root_counter;
3270 extern int __kmp_version;
3271 
3272 /* list of address of allocated caches for commons */
3273 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3274 
3275 /* Barrier algorithm types and options */
3276 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3277 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3278 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3279 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3280 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3281 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3282 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3283 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3284 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3285 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3286 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3287 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3288 
3289 /* Global Locks */
3290 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3291 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3292 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3293 extern kmp_bootstrap_lock_t
3294  __kmp_exit_lock; /* exit() is not always thread-safe */
3295 #if KMP_USE_MONITOR
3296 extern kmp_bootstrap_lock_t
3297  __kmp_monitor_lock; /* control monitor thread creation */
3298 #endif
3299 extern kmp_bootstrap_lock_t
3300  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3301  __kmp_threads expansion to co-exist */
3302 
3303 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3304 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3305 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3306 
3307 extern enum library_type __kmp_library;
3308 
3309 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3310 extern enum sched_type __kmp_static; /* default static scheduling method */
3311 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3312 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3313 extern int __kmp_chunk; /* default runtime chunk size */
3314 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3315 
3316 extern size_t __kmp_stksize; /* stack size per thread */
3317 #if KMP_USE_MONITOR
3318 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3319 #endif
3320 extern size_t __kmp_stkoffset; /* stack offset per thread */
3321 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3322 
3323 extern size_t
3324  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3325 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3326 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3327 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3328 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3329 extern int __kmp_generate_warnings; /* should we issue warnings? */
3330 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3331 
3332 #ifdef DEBUG_SUSPEND
3333 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3334 #endif
3335 
3336 extern kmp_int32 __kmp_use_yield;
3337 extern kmp_int32 __kmp_use_yield_exp_set;
3338 extern kmp_uint32 __kmp_yield_init;
3339 extern kmp_uint32 __kmp_yield_next;
3340 extern kmp_uint64 __kmp_pause_init;
3341 
3342 /* ------------------------------------------------------------------------- */
3343 extern int __kmp_allThreadsSpecified;
3344 
3345 extern size_t __kmp_align_alloc;
3346 /* following data protected by initialization routines */
3347 extern int __kmp_xproc; /* number of processors in the system */
3348 extern int __kmp_avail_proc; /* number of processors available to the process */
3349 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3350 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3351 // maximum total number of concurrently-existing threads on device
3352 extern int __kmp_max_nth;
3353 // maximum total number of concurrently-existing threads in a contention group
3354 extern int __kmp_cg_max_nth;
3355 extern int __kmp_task_max_nth; // max threads used in a task
3356 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3357 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3358  __kmp_root */
3359 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3360  region a la OMP_NUM_THREADS */
3361 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3362  initialization */
3363 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3364  used (fixed) */
3365 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3366  (__kmpc_threadprivate_cached()) */
3367 extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3368  blocking (env setting) */
3369 extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3370 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3371 
3372 // Convert raw blocktime from ms to us if needed.
3373 static inline void __kmp_aux_convert_blocktime(int *bt) {
3374  if (__kmp_blocktime_units == 'm') {
3375  if (*bt > INT_MAX / 1000) {
3376  *bt = INT_MAX / 1000;
3377  KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3378  }
3379  *bt = *bt * 1000;
3380  }
3381 }
3382 
3383 #if KMP_USE_MONITOR
3384 extern int
3385  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3386 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3387  blocking */
3388 #endif
3389 #ifdef KMP_ADJUST_BLOCKTIME
3390 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3391 #endif /* KMP_ADJUST_BLOCKTIME */
3392 #ifdef KMP_DFLT_NTH_CORES
3393 extern int __kmp_ncores; /* Total number of cores for threads placement */
3394 #endif
3395 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3396 extern int __kmp_abort_delay;
3397 
3398 extern int __kmp_need_register_atfork_specified;
3399 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3400  to install fork handler */
3401 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3402  0 - not set, will be set at runtime
3403  1 - using stack search
3404  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3405  X*) or TlsGetValue(Windows* OS))
3406  3 - static TLS (__declspec(thread) __kmp_gtid),
3407  Linux* OS .so only. */
3408 extern int
3409  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3410 #ifdef KMP_TDATA_GTID
3411 extern KMP_THREAD_LOCAL int __kmp_gtid;
3412 #endif
3413 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3414 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3415 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3416 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3417 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3418 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3419 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3420 
3421 // max_active_levels for nested parallelism enabled by default via
3422 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3423 extern int __kmp_dflt_max_active_levels;
3424 // Indicates whether value of __kmp_dflt_max_active_levels was already
3425 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3426 extern bool __kmp_dflt_max_active_levels_set;
3427 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3428  concurrent execution per team */
3429 #if KMP_NESTED_HOT_TEAMS
3430 extern int __kmp_hot_teams_mode;
3431 extern int __kmp_hot_teams_max_level;
3432 #endif
3433 
3434 #if KMP_OS_LINUX
3435 extern enum clock_function_type __kmp_clock_function;
3436 extern int __kmp_clock_function_param;
3437 #endif /* KMP_OS_LINUX */
3438 
3439 #if KMP_MIC_SUPPORTED
3440 extern enum mic_type __kmp_mic_type;
3441 #endif
3442 
3443 #ifdef USE_LOAD_BALANCE
3444 extern double __kmp_load_balance_interval; // load balance algorithm interval
3445 #endif /* USE_LOAD_BALANCE */
3446 
3447 // OpenMP 3.1 - Nested num threads array
3448 typedef struct kmp_nested_nthreads_t {
3449  int *nth;
3450  int size;
3451  int used;
3452 } kmp_nested_nthreads_t;
3453 
3454 extern kmp_nested_nthreads_t __kmp_nested_nth;
3455 
3456 #if KMP_USE_ADAPTIVE_LOCKS
3457 
3458 // Parameters for the speculative lock backoff system.
3459 struct kmp_adaptive_backoff_params_t {
3460  // Number of soft retries before it counts as a hard retry.
3461  kmp_uint32 max_soft_retries;
3462  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3463  // the right
3464  kmp_uint32 max_badness;
3465 };
3466 
3467 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3468 
3469 #if KMP_DEBUG_ADAPTIVE_LOCKS
3470 extern const char *__kmp_speculative_statsfile;
3471 #endif
3472 
3473 #endif // KMP_USE_ADAPTIVE_LOCKS
3474 
3475 extern int __kmp_display_env; /* TRUE or FALSE */
3476 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3477 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3478 extern int __kmp_nteams;
3479 extern int __kmp_teams_thread_limit;
3480 
3481 /* ------------------------------------------------------------------------- */
3482 
3483 /* the following are protected by the fork/join lock */
3484 /* write: lock read: anytime */
3485 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3486 /* Holds old arrays of __kmp_threads until library shutdown */
3487 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3488 /* read/write: lock */
3489 extern volatile kmp_team_t *__kmp_team_pool;
3490 extern volatile kmp_info_t *__kmp_thread_pool;
3491 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3492 
3493 // total num threads reachable from some root thread including all root threads
3494 extern volatile int __kmp_nth;
3495 /* total number of threads reachable from some root thread including all root
3496  threads, and those in the thread pool */
3497 extern volatile int __kmp_all_nth;
3498 extern std::atomic<int> __kmp_thread_pool_active_nth;
3499 
3500 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3501 /* end data protected by fork/join lock */
3502 /* ------------------------------------------------------------------------- */
3503 
3504 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3505 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3506 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3507 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3508 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3509 
3510 // AT: Which way is correct?
3511 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3512 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3513 #define __kmp_get_team_num_threads(gtid) \
3514  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3515 
3516 static inline bool KMP_UBER_GTID(int gtid) {
3517  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3518  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3519  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3520  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3521 }
3522 
3523 static inline int __kmp_tid_from_gtid(int gtid) {
3524  KMP_DEBUG_ASSERT(gtid >= 0);
3525  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3526 }
3527 
3528 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3529  KMP_DEBUG_ASSERT(tid >= 0 && team);
3530  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3531 }
3532 
3533 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3534  KMP_DEBUG_ASSERT(thr);
3535  return thr->th.th_info.ds.ds_gtid;
3536 }
3537 
3538 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3539  KMP_DEBUG_ASSERT(gtid >= 0);
3540  return __kmp_threads[gtid];
3541 }
3542 
3543 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3544  KMP_DEBUG_ASSERT(gtid >= 0);
3545  return __kmp_threads[gtid]->th.th_team;
3546 }
3547 
3548 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3549  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3550  KMP_FATAL(ThreadIdentInvalid);
3551 }
3552 
3553 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3554 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3555 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3556 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3557 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3558 #endif
3559 
3560 #if KMP_HAVE_UMWAIT
3561 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3562 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3563 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3564 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3565 #endif
3566 
3567 /* ------------------------------------------------------------------------- */
3568 
3569 extern kmp_global_t __kmp_global; /* global status */
3570 
3571 extern kmp_info_t __kmp_monitor;
3572 // For Debugging Support Library
3573 extern std::atomic<kmp_int32> __kmp_team_counter;
3574 // For Debugging Support Library
3575 extern std::atomic<kmp_int32> __kmp_task_counter;
3576 
3577 #if USE_DEBUGGER
3578 #define _KMP_GEN_ID(counter) \
3579  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3580 #else
3581 #define _KMP_GEN_ID(counter) (~0)
3582 #endif /* USE_DEBUGGER */
3583 
3584 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3585 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3586 
3587 /* ------------------------------------------------------------------------ */
3588 
3589 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3590  size_t size, char const *format, ...);
3591 
3592 extern void __kmp_serial_initialize(void);
3593 extern void __kmp_middle_initialize(void);
3594 extern void __kmp_parallel_initialize(void);
3595 
3596 extern void __kmp_internal_begin(void);
3597 extern void __kmp_internal_end_library(int gtid);
3598 extern void __kmp_internal_end_thread(int gtid);
3599 extern void __kmp_internal_end_atexit(void);
3600 extern void __kmp_internal_end_dtor(void);
3601 extern void __kmp_internal_end_dest(void *);
3602 
3603 extern int __kmp_register_root(int initial_thread);
3604 extern void __kmp_unregister_root(int gtid);
3605 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3606 
3607 extern int __kmp_ignore_mppbeg(void);
3608 extern int __kmp_ignore_mppend(void);
3609 
3610 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3611 extern void __kmp_exit_single(int gtid);
3612 
3613 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3614 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3615 
3616 #ifdef USE_LOAD_BALANCE
3617 extern int __kmp_get_load_balance(int);
3618 #endif
3619 
3620 extern int __kmp_get_global_thread_id(void);
3621 extern int __kmp_get_global_thread_id_reg(void);
3622 extern void __kmp_exit_thread(int exit_status);
3623 extern void __kmp_abort(char const *format, ...);
3624 extern void __kmp_abort_thread(void);
3625 KMP_NORETURN extern void __kmp_abort_process(void);
3626 extern void __kmp_warn(char const *format, ...);
3627 
3628 extern void __kmp_set_num_threads(int new_nth, int gtid);
3629 
3630 extern bool __kmp_detect_shm();
3631 extern bool __kmp_detect_tmp();
3632 
3633 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3634 // registered.
3635 static inline kmp_info_t *__kmp_entry_thread() {
3636  int gtid = __kmp_entry_gtid();
3637 
3638  return __kmp_threads[gtid];
3639 }
3640 
3641 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3642 extern int __kmp_get_max_active_levels(int gtid);
3643 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3644 extern int __kmp_get_team_size(int gtid, int level);
3645 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3646 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3647 
3648 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3649 extern void __kmp_init_random(kmp_info_t *thread);
3650 
3651 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3652 extern void __kmp_adjust_num_threads(int new_nproc);
3653 extern void __kmp_check_stksize(size_t *val);
3654 
3655 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3656 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3657 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3658 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3659 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3660 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3661 
3662 #if USE_FAST_MEMORY
3663 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3664  size_t size KMP_SRC_LOC_DECL);
3665 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3666 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3667 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3668 #define __kmp_fast_allocate(this_thr, size) \
3669  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3670 #define __kmp_fast_free(this_thr, ptr) \
3671  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3672 #endif
3673 
3674 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3675 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3676  size_t elsize KMP_SRC_LOC_DECL);
3677 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3678  size_t size KMP_SRC_LOC_DECL);
3679 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3680 #define __kmp_thread_malloc(th, size) \
3681  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3682 #define __kmp_thread_calloc(th, nelem, elsize) \
3683  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3684 #define __kmp_thread_realloc(th, ptr, size) \
3685  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3686 #define __kmp_thread_free(th, ptr) \
3687  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3688 
3689 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3690 
3691 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3692  kmp_proc_bind_t proc_bind);
3693 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3694  int num_threads);
3695 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3696  int num_teams_ub, int num_threads);
3697 
3698 extern void __kmp_yield();
3699 
3700 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3701  enum sched_type schedule, kmp_int32 lb,
3702  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3703 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3704  enum sched_type schedule, kmp_uint32 lb,
3705  kmp_uint32 ub, kmp_int32 st,
3706  kmp_int32 chunk);
3707 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3708  enum sched_type schedule, kmp_int64 lb,
3709  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3710 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3711  enum sched_type schedule, kmp_uint64 lb,
3712  kmp_uint64 ub, kmp_int64 st,
3713  kmp_int64 chunk);
3714 
3715 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3716  kmp_int32 *p_last, kmp_int32 *p_lb,
3717  kmp_int32 *p_ub, kmp_int32 *p_st);
3718 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3719  kmp_int32 *p_last, kmp_uint32 *p_lb,
3720  kmp_uint32 *p_ub, kmp_int32 *p_st);
3721 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3722  kmp_int32 *p_last, kmp_int64 *p_lb,
3723  kmp_int64 *p_ub, kmp_int64 *p_st);
3724 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3725  kmp_int32 *p_last, kmp_uint64 *p_lb,
3726  kmp_uint64 *p_ub, kmp_int64 *p_st);
3727 
3728 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3729 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3730 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3731 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3732 
3733 #ifdef KMP_GOMP_COMPAT
3734 
3735 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3736  enum sched_type schedule, kmp_int32 lb,
3737  kmp_int32 ub, kmp_int32 st,
3738  kmp_int32 chunk, int push_ws);
3739 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3740  enum sched_type schedule, kmp_uint32 lb,
3741  kmp_uint32 ub, kmp_int32 st,
3742  kmp_int32 chunk, int push_ws);
3743 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3744  enum sched_type schedule, kmp_int64 lb,
3745  kmp_int64 ub, kmp_int64 st,
3746  kmp_int64 chunk, int push_ws);
3747 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3748  enum sched_type schedule, kmp_uint64 lb,
3749  kmp_uint64 ub, kmp_int64 st,
3750  kmp_int64 chunk, int push_ws);
3751 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3752 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3753 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3754 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3755 
3756 #endif /* KMP_GOMP_COMPAT */
3757 
3758 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3759 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3760 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3761 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3762 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3763 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3764  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3765  void *obj);
3766 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3767  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3768 
3769 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3770  int final_spin
3771 #if USE_ITT_BUILD
3772  ,
3773  void *itt_sync_obj
3774 #endif
3775 );
3776 extern void __kmp_release_64(kmp_flag_64<> *flag);
3777 
3778 extern void __kmp_infinite_loop(void);
3779 
3780 extern void __kmp_cleanup(void);
3781 
3782 #if KMP_HANDLE_SIGNALS
3783 extern int __kmp_handle_signals;
3784 extern void __kmp_install_signals(int parallel_init);
3785 extern void __kmp_remove_signals(void);
3786 #endif
3787 
3788 extern void __kmp_clear_system_time(void);
3789 extern void __kmp_read_system_time(double *delta);
3790 
3791 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3792 
3793 extern void __kmp_expand_host_name(char *buffer, size_t size);
3794 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3795 
3796 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3797 extern void
3798 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3799 #endif
3800 
3801 extern void
3802 __kmp_runtime_initialize(void); /* machine specific initialization */
3803 extern void __kmp_runtime_destroy(void);
3804 
3805 #if KMP_AFFINITY_SUPPORTED
3806 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3807  kmp_affin_mask_t *mask);
3808 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3809  kmp_affin_mask_t *mask);
3810 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3811 extern void __kmp_affinity_uninitialize(void);
3812 extern void __kmp_affinity_set_init_mask(
3813  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3814 void __kmp_affinity_bind_init_mask(int gtid);
3815 extern void __kmp_affinity_bind_place(int gtid);
3816 extern void __kmp_affinity_determine_capable(const char *env_var);
3817 extern int __kmp_aux_set_affinity(void **mask);
3818 extern int __kmp_aux_get_affinity(void **mask);
3819 extern int __kmp_aux_get_affinity_max_proc();
3820 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3821 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3822 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3823 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3824 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3825 extern int kmp_set_thread_affinity_mask_initial(void);
3826 #endif
3827 static inline void __kmp_assign_root_init_mask() {
3828  int gtid = __kmp_entry_gtid();
3829  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3830  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3831  __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3832  __kmp_affinity_bind_init_mask(gtid);
3833  r->r.r_affinity_assigned = TRUE;
3834  }
3835 }
3836 static inline void __kmp_reset_root_init_mask(int gtid) {
3837  if (!KMP_AFFINITY_CAPABLE())
3838  return;
3839  kmp_info_t *th = __kmp_threads[gtid];
3840  kmp_root_t *r = th->th.th_root;
3841  if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3842  __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3843  KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3844  r->r.r_affinity_assigned = FALSE;
3845  }
3846 }
3847 #else /* KMP_AFFINITY_SUPPORTED */
3848 #define __kmp_assign_root_init_mask() /* Nothing */
3849 static inline void __kmp_reset_root_init_mask(int gtid) {}
3850 #endif /* KMP_AFFINITY_SUPPORTED */
3851 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3852 // format string is for affinity, so platforms that do not support
3853 // affinity can still use the other fields, e.g., %n for num_threads
3854 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3855  kmp_str_buf_t *buffer);
3856 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3857 
3858 extern void __kmp_cleanup_hierarchy();
3859 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3860 
3861 #if KMP_USE_FUTEX
3862 
3863 extern int __kmp_futex_determine_capable(void);
3864 
3865 #endif // KMP_USE_FUTEX
3866 
3867 extern void __kmp_gtid_set_specific(int gtid);
3868 extern int __kmp_gtid_get_specific(void);
3869 
3870 extern double __kmp_read_cpu_time(void);
3871 
3872 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3873 
3874 #if KMP_USE_MONITOR
3875 extern void __kmp_create_monitor(kmp_info_t *th);
3876 #endif
3877 
3878 extern void *__kmp_launch_thread(kmp_info_t *thr);
3879 
3880 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3881 
3882 #if KMP_OS_WINDOWS
3883 extern int __kmp_still_running(kmp_info_t *th);
3884 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3885 extern void __kmp_free_handle(kmp_thread_t tHandle);
3886 #endif
3887 
3888 #if KMP_USE_MONITOR
3889 extern void __kmp_reap_monitor(kmp_info_t *th);
3890 #endif
3891 extern void __kmp_reap_worker(kmp_info_t *th);
3892 extern void __kmp_terminate_thread(int gtid);
3893 
3894 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3895 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3896 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3897 
3898 extern void __kmp_elapsed(double *);
3899 extern void __kmp_elapsed_tick(double *);
3900 
3901 extern void __kmp_enable(int old_state);
3902 extern void __kmp_disable(int *old_state);
3903 
3904 extern void __kmp_thread_sleep(int millis);
3905 
3906 extern void __kmp_common_initialize(void);
3907 extern void __kmp_common_destroy(void);
3908 extern void __kmp_common_destroy_gtid(int gtid);
3909 
3910 #if KMP_OS_UNIX
3911 extern void __kmp_register_atfork(void);
3912 #endif
3913 extern void __kmp_suspend_initialize(void);
3914 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3915 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3916 
3917 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3918  int tid);
3919 extern kmp_team_t *
3920 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3921 #if OMPT_SUPPORT
3922  ompt_data_t ompt_parallel_data,
3923 #endif
3924  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3925  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3926 extern void __kmp_free_thread(kmp_info_t *);
3927 extern void __kmp_free_team(kmp_root_t *,
3928  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3929 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3930 
3931 /* ------------------------------------------------------------------------ */
3932 
3933 extern void __kmp_initialize_bget(kmp_info_t *th);
3934 extern void __kmp_finalize_bget(kmp_info_t *th);
3935 
3936 KMP_EXPORT void *kmpc_malloc(size_t size);
3937 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3938 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3939 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3940 KMP_EXPORT void kmpc_free(void *ptr);
3941 
3942 /* declarations for internal use */
3943 
3944 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3945  size_t reduce_size, void *reduce_data,
3946  void (*reduce)(void *, void *));
3947 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3948 extern int __kmp_barrier_gomp_cancel(int gtid);
3949 
3954 enum fork_context_e {
3955  fork_context_gnu,
3957  fork_context_intel,
3958  fork_context_last
3959 };
3960 extern int __kmp_fork_call(ident_t *loc, int gtid,
3961  enum fork_context_e fork_context, kmp_int32 argc,
3962  microtask_t microtask, launch_t invoker,
3963  kmp_va_list ap);
3964 
3965 extern void __kmp_join_call(ident_t *loc, int gtid
3966 #if OMPT_SUPPORT
3967  ,
3968  enum fork_context_e fork_context
3969 #endif
3970  ,
3971  int exit_teams = 0);
3972 
3973 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3974 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3975 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3976 extern int __kmp_invoke_task_func(int gtid);
3977 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3978  kmp_info_t *this_thr,
3979  kmp_team_t *team);
3980 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3981  kmp_info_t *this_thr,
3982  kmp_team_t *team);
3983 
3984 // should never have been exported
3985 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3986 extern int __kmp_invoke_teams_master(int gtid);
3987 extern void __kmp_teams_master(int gtid);
3988 extern int __kmp_aux_get_team_num();
3989 extern int __kmp_aux_get_num_teams();
3990 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3991 extern void __kmp_user_set_library(enum library_type arg);
3992 extern void __kmp_aux_set_library(enum library_type arg);
3993 extern void __kmp_aux_set_stacksize(size_t arg);
3994 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3995 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3996 
3997 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3998 void kmpc_set_blocktime(int arg);
3999 void ompc_set_nested(int flag);
4000 void ompc_set_dynamic(int flag);
4001 void ompc_set_num_threads(int arg);
4002 
4003 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4004  kmp_team_t *team, int tid);
4005 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4006 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4007  kmp_tasking_flags_t *flags,
4008  size_t sizeof_kmp_task_t,
4009  size_t sizeof_shareds,
4010  kmp_routine_entry_t task_entry);
4011 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4012  kmp_team_t *team, int tid,
4013  int set_curr_task);
4014 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4015 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4016 
4017 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4018  int gtid,
4019  kmp_task_t *task);
4020 extern void __kmp_fulfill_event(kmp_event_t *event);
4021 
4022 extern void __kmp_free_task_team(kmp_info_t *thread,
4023  kmp_task_team_t *task_team);
4024 extern void __kmp_reap_task_teams(void);
4025 extern void __kmp_wait_to_unref_task_teams(void);
4026 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4027  int always);
4028 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4029 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4030 #if USE_ITT_BUILD
4031  ,
4032  void *itt_sync_obj
4033 #endif /* USE_ITT_BUILD */
4034  ,
4035  int wait = 1);
4036 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4037  int gtid);
4038 
4039 extern int __kmp_is_address_mapped(void *addr);
4040 extern kmp_uint64 __kmp_hardware_timestamp(void);
4041 
4042 #if KMP_OS_UNIX
4043 extern int __kmp_read_from_file(char const *path, char const *format, ...);
4044 #endif
4045 
4046 /* ------------------------------------------------------------------------ */
4047 //
4048 // Assembly routines that have no compiler intrinsic replacement
4049 //
4050 
4051 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4052  void *argv[]
4053 #if OMPT_SUPPORT
4054  ,
4055  void **exit_frame_ptr
4056 #endif
4057 );
4058 
4059 /* ------------------------------------------------------------------------ */
4060 
4061 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4062 KMP_EXPORT void __kmpc_end(ident_t *);
4063 
4064 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4065  kmpc_ctor_vec ctor,
4066  kmpc_cctor_vec cctor,
4067  kmpc_dtor_vec dtor,
4068  size_t vector_length);
4069 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4070  kmpc_ctor ctor, kmpc_cctor cctor,
4071  kmpc_dtor dtor);
4072 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4073  void *data, size_t size);
4074 
4075 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4076 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4077 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4078 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4079 
4080 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4081 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4082  kmpc_micro microtask, ...);
4083 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4084  kmpc_micro microtask, kmp_int32 cond,
4085  void *args);
4086 
4087 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4088 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4089 
4090 KMP_EXPORT void __kmpc_flush(ident_t *);
4091 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4092 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4093 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4094 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4095  kmp_int32 filter);
4096 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4097 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4098 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4099 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4100  kmp_critical_name *);
4101 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4102  kmp_critical_name *);
4103 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4104  kmp_critical_name *, uint32_t hint);
4105 
4106 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4107 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4108 
4109 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4110  kmp_int32 global_tid);
4111 
4112 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4113 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4114 
4115 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4116 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4117  kmp_int32 numberOfSections);
4118 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4119 
4120 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4121  kmp_int32 schedtype, kmp_int32 *plastiter,
4122  kmp_int *plower, kmp_int *pupper,
4123  kmp_int *pstride, kmp_int incr,
4124  kmp_int chunk);
4125 
4126 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4127 
4128 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4129  size_t cpy_size, void *cpy_data,
4130  void (*cpy_func)(void *, void *),
4131  kmp_int32 didit);
4132 
4133 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4134  void *cpy_data);
4135 
4136 extern void KMPC_SET_NUM_THREADS(int arg);
4137 extern void KMPC_SET_DYNAMIC(int flag);
4138 extern void KMPC_SET_NESTED(int flag);
4139 
4140 /* OMP 3.0 tasking interface routines */
4141 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4142  kmp_task_t *new_task);
4143 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4144  kmp_int32 flags,
4145  size_t sizeof_kmp_task_t,
4146  size_t sizeof_shareds,
4147  kmp_routine_entry_t task_entry);
4148 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4149  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4150  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4151 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4152  kmp_task_t *task);
4153 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4154  kmp_task_t *task);
4155 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4156  kmp_task_t *new_task);
4157 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4158 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4159  int end_part);
4160 
4161 #if TASK_UNUSED
4162 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4163 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4164  kmp_task_t *task);
4165 #endif // TASK_UNUSED
4166 
4167 /* ------------------------------------------------------------------------ */
4168 
4169 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4170 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4171 
4172 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4173  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4174  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4175  kmp_depend_info_t *noalias_dep_list);
4176 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4177  kmp_int32 ndeps,
4178  kmp_depend_info_t *dep_list,
4179  kmp_int32 ndeps_noalias,
4180  kmp_depend_info_t *noalias_dep_list);
4181 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4182  * Placeholder for taskwait with nowait clause.*/
4183 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4184  kmp_int32 ndeps,
4185  kmp_depend_info_t *dep_list,
4186  kmp_int32 ndeps_noalias,
4187  kmp_depend_info_t *noalias_dep_list,
4188  kmp_int32 has_no_wait);
4189 
4190 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4191  bool serialize_immediate);
4192 
4193 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4194  kmp_int32 cncl_kind);
4195 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4196  kmp_int32 cncl_kind);
4197 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4198 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4199 
4200 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4201 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4202 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4203  kmp_int32 if_val, kmp_uint64 *lb,
4204  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4205  kmp_int32 sched, kmp_uint64 grainsize,
4206  void *task_dup);
4207 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4208  kmp_task_t *task, kmp_int32 if_val,
4209  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4210  kmp_int32 nogroup, kmp_int32 sched,
4211  kmp_uint64 grainsize, kmp_int32 modifier,
4212  void *task_dup);
4213 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4214 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4215 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4216 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4217  int is_ws, int num,
4218  void *data);
4219 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4220  int num, void *data);
4221 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4222  int is_ws);
4223 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4224  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4225  kmp_task_affinity_info_t *affin_list);
4226 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4227 KMP_EXPORT int __kmp_get_max_teams(void);
4228 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4229 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4230 
4231 /* Interface target task integration */
4232 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4233 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4234 
4235 /* Lock interface routines (fast versions with gtid passed in) */
4236 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4237  void **user_lock);
4238 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4239  void **user_lock);
4240 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4241  void **user_lock);
4242 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4243  void **user_lock);
4244 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4245 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4246  void **user_lock);
4247 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4248  void **user_lock);
4249 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4250  void **user_lock);
4251 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4252 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4253  void **user_lock);
4254 
4255 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4256  void **user_lock, uintptr_t hint);
4257 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4258  void **user_lock,
4259  uintptr_t hint);
4260 
4261 #if OMPX_TASKGRAPH
4262 // Taskgraph's Record & Replay mechanism
4263 // __kmp_tdg_is_recording: check whether a given TDG is recording
4264 // status: the tdg's current status
4265 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4266  return status == KMP_TDG_RECORDING;
4267 }
4268 
4269 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4270  kmp_int32 input_flags,
4271  kmp_int32 tdg_id);
4272 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4273  kmp_int32 input_flags, kmp_int32 tdg_id);
4274 #endif
4275 /* Interface to fast scalable reduce methods routines */
4276 
4277 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4278  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4279  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4280  kmp_critical_name *lck);
4281 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4282  kmp_critical_name *lck);
4283 KMP_EXPORT kmp_int32 __kmpc_reduce(
4284  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4285  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4286  kmp_critical_name *lck);
4287 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4288  kmp_critical_name *lck);
4289 
4290 /* Internal fast reduction routines */
4291 
4292 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4293  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4294  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4295  kmp_critical_name *lck);
4296 
4297 // this function is for testing set/get/determine reduce method
4298 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4299 
4300 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4301 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4302 
4303 // C++ port
4304 // missing 'extern "C"' declarations
4305 
4306 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4307 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4308 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4309  kmp_int32 num_threads);
4310 
4311 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4312  int proc_bind);
4313 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4314  kmp_int32 num_teams,
4315  kmp_int32 num_threads);
4316 KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4317  kmp_int32 thread_limit);
4318 /* Function for OpenMP 5.1 num_teams clause */
4319 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4320  kmp_int32 num_teams_lb,
4321  kmp_int32 num_teams_ub,
4322  kmp_int32 num_threads);
4323 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4324  kmpc_micro microtask, ...);
4325 struct kmp_dim { // loop bounds info casted to kmp_int64
4326  kmp_int64 lo; // lower
4327  kmp_int64 up; // upper
4328  kmp_int64 st; // stride
4329 };
4330 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4331  kmp_int32 num_dims,
4332  const struct kmp_dim *dims);
4333 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4334  const kmp_int64 *vec);
4335 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4336  const kmp_int64 *vec);
4337 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4338 
4339 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4340  void *data, size_t size,
4341  void ***cache);
4342 
4343 // The routines below are not exported.
4344 // Consider making them 'static' in corresponding source files.
4345 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4346  void *data_addr, size_t pc_size);
4347 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4348  void *data_addr,
4349  size_t pc_size);
4350 void __kmp_threadprivate_resize_cache(int newCapacity);
4351 void __kmp_cleanup_threadprivate_caches();
4352 
4353 // ompc_, kmpc_ entries moved from omp.h.
4354 #if KMP_OS_WINDOWS
4355 #define KMPC_CONVENTION __cdecl
4356 #else
4357 #define KMPC_CONVENTION
4358 #endif
4359 
4360 #ifndef __OMP_H
4361 typedef enum omp_sched_t {
4362  omp_sched_static = 1,
4363  omp_sched_dynamic = 2,
4364  omp_sched_guided = 3,
4365  omp_sched_auto = 4
4366 } omp_sched_t;
4367 typedef void *kmp_affinity_mask_t;
4368 #endif
4369 
4370 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4371 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4372 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4373 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4374 KMP_EXPORT int KMPC_CONVENTION
4375 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4376 KMP_EXPORT int KMPC_CONVENTION
4377 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4378 KMP_EXPORT int KMPC_CONVENTION
4379 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4380 
4381 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4382 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4383 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4384 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4385 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4386 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4387 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4388 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4389 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4390  char const *format);
4391 
4392 enum kmp_target_offload_kind {
4393  tgt_disabled = 0,
4394  tgt_default = 1,
4395  tgt_mandatory = 2
4396 };
4397 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4398 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4399 extern kmp_target_offload_kind_t __kmp_target_offload;
4400 extern int __kmpc_get_target_offload();
4401 
4402 // Constants used in libomptarget
4403 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4404 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4405 
4406 // OMP Pause Resource
4407 
4408 // The following enum is used both to set the status in __kmp_pause_status, and
4409 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4410 typedef enum kmp_pause_status_t {
4411  kmp_not_paused = 0, // status is not paused, or, requesting resume
4412  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4413  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4414 } kmp_pause_status_t;
4415 
4416 // This stores the pause state of the runtime
4417 extern kmp_pause_status_t __kmp_pause_status;
4418 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4419 extern int __kmp_pause_resource(kmp_pause_status_t level);
4420 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4421 extern void __kmp_resume_if_soft_paused();
4422 // Hard resume simply resets the status to not paused. Library will appear to
4423 // be uninitialized after hard pause. Let OMP constructs trigger required
4424 // initializations.
4425 static inline void __kmp_resume_if_hard_paused() {
4426  if (__kmp_pause_status == kmp_hard_paused) {
4427  __kmp_pause_status = kmp_not_paused;
4428  }
4429 }
4430 
4431 extern void __kmp_omp_display_env(int verbose);
4432 
4433 // 1: it is initializing hidden helper team
4434 extern volatile int __kmp_init_hidden_helper;
4435 // 1: the hidden helper team is done
4436 extern volatile int __kmp_hidden_helper_team_done;
4437 // 1: enable hidden helper task
4438 extern kmp_int32 __kmp_enable_hidden_helper;
4439 // Main thread of hidden helper team
4440 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4441 // Descriptors for the hidden helper threads
4442 extern kmp_info_t **__kmp_hidden_helper_threads;
4443 // Number of hidden helper threads
4444 extern kmp_int32 __kmp_hidden_helper_threads_num;
4445 // Number of hidden helper tasks that have not been executed yet
4446 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4447 
4448 extern void __kmp_hidden_helper_initialize();
4449 extern void __kmp_hidden_helper_threads_initz_routine();
4450 extern void __kmp_do_initialize_hidden_helper_threads();
4451 extern void __kmp_hidden_helper_threads_initz_wait();
4452 extern void __kmp_hidden_helper_initz_release();
4453 extern void __kmp_hidden_helper_threads_deinitz_wait();
4454 extern void __kmp_hidden_helper_threads_deinitz_release();
4455 extern void __kmp_hidden_helper_main_thread_wait();
4456 extern void __kmp_hidden_helper_worker_thread_wait();
4457 extern void __kmp_hidden_helper_worker_thread_signal();
4458 extern void __kmp_hidden_helper_main_thread_release();
4459 
4460 // Check whether a given thread is a hidden helper thread
4461 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4462  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4463 
4464 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4465  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4466 
4467 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4468  ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4469 
4470 #define KMP_HIDDEN_HELPER_TEAM(team) \
4471  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4472 
4473 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4474 // main thread, is skipped.
4475 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4476  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4477 
4478 // Return the adjusted gtid value by subtracting from gtid the number
4479 // of hidden helper threads. This adjusted value is the gtid the thread would
4480 // have received if there were no hidden helper threads.
4481 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4482  int adjusted_gtid = gtid;
4483  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4484  gtid - __kmp_hidden_helper_threads_num >= 0) {
4485  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4486  }
4487  return adjusted_gtid;
4488 }
4489 
4490 // Support for error directive
4491 typedef enum kmp_severity_t {
4492  severity_warning = 1,
4493  severity_fatal = 2
4494 } kmp_severity_t;
4495 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4496 
4497 // Support for scope directive
4498 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4499 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4500 
4501 #ifdef __cplusplus
4502 }
4503 #endif
4504 
4505 template <bool C, bool S>
4506 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4507 template <bool C, bool S>
4508 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4509 template <bool C, bool S>
4510 extern void __kmp_atomic_suspend_64(int th_gtid,
4511  kmp_atomic_flag_64<C, S> *flag);
4512 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4513 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4514 template <bool C, bool S>
4515 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4516 template <bool C, bool S>
4517 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4518 template <bool C, bool S>
4519 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4520 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4521 #endif
4522 template <bool C, bool S>
4523 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4524 template <bool C, bool S>
4525 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4526 template <bool C, bool S>
4527 extern void __kmp_atomic_resume_64(int target_gtid,
4528  kmp_atomic_flag_64<C, S> *flag);
4529 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4530 
4531 template <bool C, bool S>
4532 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4533  kmp_flag_32<C, S> *flag, int final_spin,
4534  int *thread_finished,
4535 #if USE_ITT_BUILD
4536  void *itt_sync_obj,
4537 #endif /* USE_ITT_BUILD */
4538  kmp_int32 is_constrained);
4539 template <bool C, bool S>
4540 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4541  kmp_flag_64<C, S> *flag, int final_spin,
4542  int *thread_finished,
4543 #if USE_ITT_BUILD
4544  void *itt_sync_obj,
4545 #endif /* USE_ITT_BUILD */
4546  kmp_int32 is_constrained);
4547 template <bool C, bool S>
4548 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4549  kmp_atomic_flag_64<C, S> *flag,
4550  int final_spin, int *thread_finished,
4551 #if USE_ITT_BUILD
4552  void *itt_sync_obj,
4553 #endif /* USE_ITT_BUILD */
4554  kmp_int32 is_constrained);
4555 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4556  kmp_flag_oncore *flag, int final_spin,
4557  int *thread_finished,
4558 #if USE_ITT_BUILD
4559  void *itt_sync_obj,
4560 #endif /* USE_ITT_BUILD */
4561  kmp_int32 is_constrained);
4562 
4563 extern int __kmp_nesting_mode;
4564 extern int __kmp_nesting_mode_nlevels;
4565 extern int *__kmp_nesting_nth_level;
4566 extern void __kmp_init_nesting_mode();
4567 extern void __kmp_set_nesting_mode_threads();
4568 
4576  FILE *f;
4577 
4578  void close() {
4579  if (f && f != stdout && f != stderr) {
4580  fclose(f);
4581  f = nullptr;
4582  }
4583  }
4584 
4585 public:
4586  kmp_safe_raii_file_t() : f(nullptr) {}
4587  kmp_safe_raii_file_t(const char *filename, const char *mode,
4588  const char *env_var = nullptr)
4589  : f(nullptr) {
4590  open(filename, mode, env_var);
4591  }
4592  ~kmp_safe_raii_file_t() { close(); }
4593 
4597  void open(const char *filename, const char *mode,
4598  const char *env_var = nullptr) {
4599  KMP_ASSERT(!f);
4600  f = fopen(filename, mode);
4601  if (!f) {
4602  int code = errno;
4603  if (env_var) {
4604  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4605  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4606  } else {
4607  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4608  __kmp_msg_null);
4609  }
4610  }
4611  }
4614  int try_open(const char *filename, const char *mode) {
4615  KMP_ASSERT(!f);
4616  f = fopen(filename, mode);
4617  if (!f)
4618  return errno;
4619  return 0;
4620  }
4623  void set_stdout() {
4624  KMP_ASSERT(!f);
4625  f = stdout;
4626  }
4629  void set_stderr() {
4630  KMP_ASSERT(!f);
4631  f = stderr;
4632  }
4633  operator bool() { return bool(f); }
4634  operator FILE *() { return f; }
4635 };
4636 
4637 template <typename SourceType, typename TargetType,
4638  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4639  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4640  bool isSourceSigned = std::is_signed<SourceType>::value,
4641  bool isTargetSigned = std::is_signed<TargetType>::value>
4642 struct kmp_convert {};
4643 
4644 // Both types are signed; Source smaller
4645 template <typename SourceType, typename TargetType>
4646 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4647  static TargetType to(SourceType src) { return (TargetType)src; }
4648 };
4649 // Source equal
4650 template <typename SourceType, typename TargetType>
4651 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4652  static TargetType to(SourceType src) { return src; }
4653 };
4654 // Source bigger
4655 template <typename SourceType, typename TargetType>
4656 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4657  static TargetType to(SourceType src) {
4658  KMP_ASSERT(src <= static_cast<SourceType>(
4659  (std::numeric_limits<TargetType>::max)()));
4660  KMP_ASSERT(src >= static_cast<SourceType>(
4661  (std::numeric_limits<TargetType>::min)()));
4662  return (TargetType)src;
4663  }
4664 };
4665 
4666 // Source signed, Target unsigned
4667 // Source smaller
4668 template <typename SourceType, typename TargetType>
4669 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4670  static TargetType to(SourceType src) {
4671  KMP_ASSERT(src >= 0);
4672  return (TargetType)src;
4673  }
4674 };
4675 // Source equal
4676 template <typename SourceType, typename TargetType>
4677 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4678  static TargetType to(SourceType src) {
4679  KMP_ASSERT(src >= 0);
4680  return (TargetType)src;
4681  }
4682 };
4683 // Source bigger
4684 template <typename SourceType, typename TargetType>
4685 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4686  static TargetType to(SourceType src) {
4687  KMP_ASSERT(src >= 0);
4688  KMP_ASSERT(src <= static_cast<SourceType>(
4689  (std::numeric_limits<TargetType>::max)()));
4690  return (TargetType)src;
4691  }
4692 };
4693 
4694 // Source unsigned, Target signed
4695 // Source smaller
4696 template <typename SourceType, typename TargetType>
4697 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4698  static TargetType to(SourceType src) { return (TargetType)src; }
4699 };
4700 // Source equal
4701 template <typename SourceType, typename TargetType>
4702 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4703  static TargetType to(SourceType src) {
4704  KMP_ASSERT(src <= static_cast<SourceType>(
4705  (std::numeric_limits<TargetType>::max)()));
4706  return (TargetType)src;
4707  }
4708 };
4709 // Source bigger
4710 template <typename SourceType, typename TargetType>
4711 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4712  static TargetType to(SourceType src) {
4713  KMP_ASSERT(src <= static_cast<SourceType>(
4714  (std::numeric_limits<TargetType>::max)()));
4715  return (TargetType)src;
4716  }
4717 };
4718 
4719 // Source unsigned, Target unsigned
4720 // Source smaller
4721 template <typename SourceType, typename TargetType>
4722 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4723  static TargetType to(SourceType src) { return (TargetType)src; }
4724 };
4725 // Source equal
4726 template <typename SourceType, typename TargetType>
4727 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4728  static TargetType to(SourceType src) { return src; }
4729 };
4730 // Source bigger
4731 template <typename SourceType, typename TargetType>
4732 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4733  static TargetType to(SourceType src) {
4734  KMP_ASSERT(src <= static_cast<SourceType>(
4735  (std::numeric_limits<TargetType>::max)()));
4736  return (TargetType)src;
4737  }
4738 };
4739 
4740 template <typename T1, typename T2>
4741 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4742  *dest = kmp_convert<T1, T2>::to(src);
4743 }
4744 
4745 #endif /* KMP_H */
__kmpc_dispatch_fini_8
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2832
KMP_IDENT_IMB
@ KMP_IDENT_IMB
Definition: kmp.h:195
__kmpc_end_single
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1919
__kmpc_dispatch_next_4u
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
Definition: kmp_dispatch.cpp:2772
__kmpc_fork_call
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
Definition: kmp_csupport.cpp:262
KMP_IDENT_WORK_LOOP
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:215
KMP_IDENT_WORK_SECTIONS
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:217
__kmpc_proxy_task_completed
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
Definition: kmp_tasking.cpp:4496
__kmpc_reduce
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
Definition: kmp_csupport.cpp:3802
__kmpc_dispatch_init_8u
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
Definition: kmp_dispatch.cpp:2676
__kmpc_omp_task_with_deps
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
Definition: kmp_taskdeps.cpp:662
__kmpc_push_num_teams_51
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
Definition: kmp_csupport.cpp:436
KMP_IDENT_WORK_DISTRIBUTE
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:219
__kmpc_omp_get_target_async_handle_ptr
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
Definition: kmp_tasking.cpp:5419
__kmpc_masked
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
Definition: kmp_csupport.cpp:894
ident::reserved_2
kmp_int32 reserved_2
Definition: kmp.h:239
__kmpc_global_thread_num
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
Definition: kmp_csupport.cpp:99
kmp_sch_default
@ kmp_sch_default
Definition: kmp.h:466
KMP_IDENT_BARRIER_IMPL
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:206
__kmpc_end
KMP_EXPORT void __kmpc_end(ident_t *)
Definition: kmp_csupport.cpp:59
kmpc_ctor
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1730
kmp_nm_static
@ kmp_nm_static
Definition: kmp.h:407
__kmpc_master
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:805
__kmpc_dispatch_next_4
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
Definition: kmp_dispatch.cpp:2756
__kmpc_single
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1866
__kmpc_taskred_init
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
Definition: kmp_tasking.cpp:2599
__kmpc_end_serialized_parallel
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:576
__kmpc_task_reduction_init
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
Definition: kmp_tasking.cpp:2572
kmp_sch_guided_chunked
@ kmp_sch_guided_chunked
Definition: kmp.h:363
__kmpc_dispatch_init_4
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
Definition: kmp_dispatch.cpp:2638
__kmpc_flush
KMP_EXPORT void __kmpc_flush(ident_t *)
Definition: kmp_csupport.cpp:734
__kmpc_next_section
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
Definition: kmp_dispatch.cpp:2387
kmp_safe_raii_file_t::open
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4597
kmp_safe_raii_file_t
Definition: kmp.h:4575
ident::psource
const char * psource
Definition: kmp.h:245
kmp_sch_guided_simd
@ kmp_sch_guided_simd
Definition: kmp.h:379
__kmpc_task_reduction_get_th_data
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
Definition: kmp_tasking.cpp:2642
__kmpc_end_reduce_nowait
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
Definition: kmp_csupport.cpp:3733
__kmpc_bound_thread_num
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
Definition: kmp_csupport.cpp:134
__kmpc_end_reduce
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
Definition: kmp_csupport.cpp:3924
__kmpc_fork_call_if
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
Definition: kmp_csupport.cpp:343
__kmpc_taskloop
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
Definition: kmp_tasking.cpp:5373
kmp_sch_upper
@ kmp_sch_upper
Definition: kmp.h:383
kmp_sch_modifier_monotonic
@ kmp_sch_modifier_monotonic
Definition: kmp.h:446
ident::reserved_3
kmp_int32 reserved_3
Definition: kmp.h:244
kmp_safe_raii_file_t::set_stdout
void set_stdout()
Definition: kmp.h:4623
__kmpc_omp_has_task_team
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
Definition: kmp_tasking.cpp:5440
__kmpc_taskloop_5
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
Definition: kmp_tasking.cpp:5400
__kmpc_ordered
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:979
kmp_safe_raii_file_t::set_stderr
void set_stderr()
Definition: kmp.h:4629
KMP_IDENT_BARRIER_EXPL
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:204
__kmpc_end_ordered
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1052
sched_type
sched_type
Definition: kmp.h:358
__kmpc_begin
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
Definition: kmp_csupport.cpp:36
__kmpc_doacross_init
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
Definition: kmp_csupport.cpp:4088
__kmpc_threadprivate_register_vec
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
Definition: kmp_threadprivate.cpp:746
kmp_nm_lower
@ kmp_nm_lower
Definition: kmp.h:403
__kmpc_dispatch_next_8
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
Definition: kmp_dispatch.cpp:2789
kmp_ord_static
@ kmp_ord_static
Definition: kmp.h:387
__kmpc_fork_teams
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
Definition: kmp_csupport.cpp:457
kmp_nm_upper
@ kmp_nm_upper
Definition: kmp.h:430
__kmpc_dispatch_fini_8u
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2846
ident::reserved_1
kmp_int32 reserved_1
Definition: kmp.h:236
kmp_nm_ord_auto
@ kmp_nm_ord_auto
Definition: kmp.h:428
KMP_IDENT_AUTOPAR
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:200
__kmpc_end_barrier_master
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1787
kmp_sch_modifier_nonmonotonic
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:448
__kmpc_proxy_task_completed_ooo
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
Definition: kmp_tasking.cpp:4560
ident
Definition: kmp.h:235
__kmpc_critical
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
Definition: kmp_csupport.cpp:1287
ident_t
struct ident ident_t
__kmpc_global_num_threads
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
Definition: kmp_csupport.cpp:121
kmpc_dtor_vec
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1759
__kmpc_task_reduction_modifier_fini
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
Definition: kmp_tasking.cpp:2855
__kmpc_bound_num_threads
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
Definition: kmp_csupport.cpp:144
__kmpc_end_masked
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:950
__kmpc_ok_to_fork
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
Definition: kmp_csupport.cpp:156
kmpc_ctor_vec
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1753
kmp_distribute_static
@ kmp_distribute_static
Definition: kmp.h:397
kmp_sch_auto
@ kmp_sch_auto
Definition: kmp.h:365
__kmpc_copyprivate_light
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
Definition: kmp_csupport.cpp:2291
kmpc_dtor
void(* kmpc_dtor)(void *)
Definition: kmp.h:1736
__kmpc_barrier
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:756
__kmpc_end_master
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:862
kmp_sch_runtime_simd
@ kmp_sch_runtime_simd
Definition: kmp.h:380
kmpc_cctor
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1743
__kmpc_in_parallel
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
Definition: kmp_csupport.cpp:218
KMP_IDENT_KMPC
@ KMP_IDENT_KMPC
Definition: kmp.h:197
__kmpc_task_reduction_modifier_init
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
Definition: kmp_tasking.cpp:2821
__kmpc_reduce_nowait
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
Definition: kmp_csupport.cpp:3573
__kmpc_threadprivate_register
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
Definition: kmp_threadprivate.cpp:504
__kmpc_push_num_threads
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
Definition: kmp_csupport.cpp:231
__kmpc_dispatch_fini_4u
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2839
__kmpc_critical_with_hint
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
Definition: kmp_csupport.cpp:1514
__kmpc_sections_init
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
Definition: kmp_dispatch.cpp:2303
kmp_sch_lower
@ kmp_sch_lower
Definition: kmp.h:359
kmpc_micro
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1712
kmp_ord_lower
@ kmp_ord_lower
Definition: kmp.h:385
__kmpc_end_critical
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
Definition: kmp_csupport.cpp:1646
__kmpc_set_thread_limit
KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, kmp_int32 thread_limit)
Definition: kmp_csupport.cpp:412
__kmpc_taskred_modifier_init
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
Definition: kmp_tasking.cpp:2841
kmp_distribute_static_chunked
@ kmp_distribute_static_chunked
Definition: kmp.h:396
kmp_nm_ord_static
@ kmp_nm_ord_static
Definition: kmp.h:424
kmp_safe_raii_file_t::try_open
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4614
__kmpc_barrier_master_nowait
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1803
kmp_ord_auto
@ kmp_ord_auto
Definition: kmp.h:391
__kmpc_copyprivate
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
Definition: kmp_csupport.cpp:2215
kmp_sch_static
@ kmp_sch_static
Definition: kmp.h:361
__kmpc_end_sections
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
Definition: kmp_dispatch.cpp:2476
__kmpc_dispatch_fini_4
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
Definition: kmp_dispatch.cpp:2825
kmpc_cctor_vec
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1765
__kmpc_dispatch_init_8
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
Definition: kmp_dispatch.cpp:2663
__kmpc_omp_wait_deps
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
Definition: kmp_taskdeps.cpp:873
__kmpc_threadprivate_cached
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
Definition: kmp_threadprivate.cpp:614
kmp_nm_guided_chunked
@ kmp_nm_guided_chunked
Definition: kmp.h:409
__kmpc_dispatch_init_4u
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
Definition: kmp_dispatch.cpp:2650
ident::flags
kmp_int32 flags
Definition: kmp.h:237
KMP_IDENT_ATOMIC_HINT_MASK
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:224
__kmpc_push_num_teams
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
Definition: kmp_csupport.cpp:393
KMP_IDENT_ATOMIC_REDUCE
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:202
__kmpc_dispatch_next_8u
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
Definition: kmp_dispatch.cpp:2805
__kmpc_serialized_parallel
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:558
kmp_ord_upper
@ kmp_ord_upper
Definition: kmp.h:393
__kmpc_for_static_fini
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1946
__kmpc_barrier_master
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
Definition: kmp_csupport.cpp:1743
kmp_nm_auto
@ kmp_nm_auto
Definition: kmp.h:411
__kmpc_omp_reg_task_with_affinity
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
Definition: kmp_tasking.cpp:1729