LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #endif
104 
105 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
106 #include <xmmintrin.h>
107 #endif
108 
109 // The below has to be defined before including "kmp_barrier.h".
110 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111 #define KMP_INTERNAL_FREE(p) free(p)
112 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #include "kmp_barrier.h"
119 #if USE_DEBUGGER
120 #include "kmp_debugger.h"
121 #endif
122 #include "kmp_i18n.h"
123 
124 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125 
126 #include "kmp_wrapper_malloc.h"
127 #if KMP_OS_UNIX
128 #include <unistd.h>
129 #if !defined NSIG && defined _NSIG
130 #define NSIG _NSIG
131 #endif
132 #endif
133 
134 #if KMP_OS_LINUX
135 #pragma weak clock_gettime
136 #endif
137 
138 #if OMPT_SUPPORT
139 #include "ompt-internal.h"
140 #endif
141 
142 #if OMPD_SUPPORT
143 #include "ompd-specific.h"
144 #endif
145 
146 #ifndef UNLIKELY
147 #define UNLIKELY(x) (x)
148 #endif
149 
150 // Affinity format function
151 #include "kmp_str.h"
152 
153 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
155 // free lists of limited size.
156 #ifndef USE_FAST_MEMORY
157 #define USE_FAST_MEMORY 3
158 #endif
159 
160 #ifndef KMP_NESTED_HOT_TEAMS
161 #define KMP_NESTED_HOT_TEAMS 0
162 #define USE_NESTED_HOT_ARG(x)
163 #else
164 #if KMP_NESTED_HOT_TEAMS
165 #define USE_NESTED_HOT_ARG(x) , x
166 #else
167 #define USE_NESTED_HOT_ARG(x)
168 #endif
169 #endif
170 
171 // Assume using BGET compare_exchange instruction instead of lock by default.
172 #ifndef USE_CMP_XCHG_FOR_BGET
173 #define USE_CMP_XCHG_FOR_BGET 1
174 #endif
175 
176 // Test to see if queuing lock is better than bootstrap lock for bget
177 // #ifndef USE_QUEUING_LOCK_FOR_BGET
178 // #define USE_QUEUING_LOCK_FOR_BGET
179 // #endif
180 
181 #define KMP_NSEC_PER_SEC 1000000000L
182 #define KMP_USEC_PER_SEC 1000000L
183 
192 enum {
197  /* 0x04 is no longer used */
206  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209 
210  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212 
224  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229 };
230 
234 typedef struct ident {
235  kmp_int32 reserved_1;
236  kmp_int32 flags;
238  kmp_int32 reserved_2;
239 #if USE_ITT_BUILD
240 /* but currently used for storing region-specific ITT */
241 /* contextual information. */
242 #endif /* USE_ITT_BUILD */
243  kmp_int32 reserved_3;
244  char const *psource;
248  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249  kmp_int32 get_openmp_version() {
250  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251  }
252 } ident_t;
257 // Some forward declarations.
258 typedef union kmp_team kmp_team_t;
259 typedef struct kmp_taskdata kmp_taskdata_t;
260 typedef union kmp_task_team kmp_task_team_t;
261 typedef union kmp_team kmp_team_p;
262 typedef union kmp_info kmp_info_p;
263 typedef union kmp_root kmp_root_p;
264 
265 template <bool C = false, bool S = true> class kmp_flag_32;
266 template <bool C = false, bool S = true> class kmp_flag_64;
267 template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268 class kmp_flag_oncore;
269 
270 #ifdef __cplusplus
271 extern "C" {
272 #endif
273 
274 /* ------------------------------------------------------------------------ */
275 
276 /* Pack two 32-bit signed integers into a 64-bit signed integer */
277 /* ToDo: Fix word ordering for big-endian machines. */
278 #define KMP_PACK_64(HIGH_32, LOW_32) \
279  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280 
281 // Generic string manipulation macros. Assume that _x is of type char *
282 #define SKIP_WS(_x) \
283  { \
284  while (*(_x) == ' ' || *(_x) == '\t') \
285  (_x)++; \
286  }
287 #define SKIP_DIGITS(_x) \
288  { \
289  while (*(_x) >= '0' && *(_x) <= '9') \
290  (_x)++; \
291  }
292 #define SKIP_TOKEN(_x) \
293  { \
294  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296  (_x)++; \
297  }
298 #define SKIP_TO(_x, _c) \
299  { \
300  while (*(_x) != '\0' && *(_x) != (_c)) \
301  (_x)++; \
302  }
303 
304 /* ------------------------------------------------------------------------ */
305 
306 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308 
309 /* ------------------------------------------------------------------------ */
310 /* Enumeration types */
311 
312 enum kmp_state_timer {
313  ts_stop,
314  ts_start,
315  ts_pause,
316 
317  ts_last_state
318 };
319 
320 enum dynamic_mode {
321  dynamic_default,
322 #ifdef USE_LOAD_BALANCE
323  dynamic_load_balance,
324 #endif /* USE_LOAD_BALANCE */
325  dynamic_random,
326  dynamic_thread_limit,
327  dynamic_max
328 };
329 
330 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
331  * not include it here */
332 #ifndef KMP_SCHED_TYPE_DEFINED
333 #define KMP_SCHED_TYPE_DEFINED
334 typedef enum kmp_sched {
335  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336  // Note: need to adjust __kmp_sch_map global array in case enum is changed
337  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341  kmp_sched_upper_std = 5, // upper bound for standard schedules
342  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344 #if KMP_STATIC_STEAL_ENABLED
345  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346 #endif
347  kmp_sched_upper,
348  kmp_sched_default = kmp_sched_static, // default scheduling
349  kmp_sched_monotonic = 0x80000000
350 } kmp_sched_t;
351 #endif
352 
357 enum sched_type : kmp_int32 {
359  kmp_sch_static_chunked = 33,
361  kmp_sch_dynamic_chunked = 35,
363  kmp_sch_runtime = 37,
365  kmp_sch_trapezoidal = 39,
366 
367  /* accessible only through KMP_SCHEDULE environment variable */
368  kmp_sch_static_greedy = 40,
369  kmp_sch_static_balanced = 41,
370  /* accessible only through KMP_SCHEDULE environment variable */
371  kmp_sch_guided_iterative_chunked = 42,
372  kmp_sch_guided_analytical_chunked = 43,
373  /* accessible only through KMP_SCHEDULE environment variable */
374  kmp_sch_static_steal = 44,
375 
376  /* static with chunk adjustment (e.g., simd) */
377  kmp_sch_static_balanced_chunked = 45,
381  /* accessible only through KMP_SCHEDULE environment variable */
385  kmp_ord_static_chunked = 65,
387  kmp_ord_dynamic_chunked = 67,
388  kmp_ord_guided_chunked = 68,
389  kmp_ord_runtime = 69,
391  kmp_ord_trapezoidal = 71,
394  /* Schedules for Distribute construct */
398  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399  single iteration/chunk, even if the loop is serialized. For the schedule
400  types listed above, the entire iteration vector is returned if the loop is
401  serialized. This doesn't work for gcc/gcomp sections. */
402  kmp_nm_lower = 160,
404  kmp_nm_static_chunked =
405  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407  kmp_nm_dynamic_chunked = 163,
409  kmp_nm_runtime = 165,
410  kmp_nm_auto = 166,
411  kmp_nm_trapezoidal = 167,
412 
413  /* accessible only through KMP_SCHEDULE environment variable */
414  kmp_nm_static_greedy = 168,
415  kmp_nm_static_balanced = 169,
416  /* accessible only through KMP_SCHEDULE environment variable */
417  kmp_nm_guided_iterative_chunked = 170,
418  kmp_nm_guided_analytical_chunked = 171,
419  kmp_nm_static_steal =
420  172, /* accessible only through OMP_SCHEDULE environment variable */
421 
422  kmp_nm_ord_static_chunked = 193,
424  kmp_nm_ord_dynamic_chunked = 195,
425  kmp_nm_ord_guided_chunked = 196,
426  kmp_nm_ord_runtime = 197,
428  kmp_nm_ord_trapezoidal = 199,
431  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432  we need to distinguish the three possible cases (no modifier, monotonic
433  modifier, nonmonotonic modifier), we need separate bits for each modifier.
434  The absence of monotonic does not imply nonmonotonic, especially since 4.5
435  says that the behaviour of the "no modifier" case is implementation defined
436  in 4.5, but will become "nonmonotonic" in 5.0.
437 
438  Since we're passing a full 32 bit value, we can use a couple of high bits
439  for these flags; out of paranoia we avoid the sign bit.
440 
441  These modifiers can be or-ed into non-static schedules by the compiler to
442  pass the additional information. They will be stripped early in the
443  processing in __kmp_dispatch_init when setting up schedules, so most of the
444  code won't ever see schedules with these bits set. */
446  (1 << 29),
448  (1 << 30),
450 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
451  (enum sched_type)( \
453 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
456  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457 #define SCHEDULE_GET_MODIFIERS(s) \
458  ((enum sched_type)( \
459  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460 #define SCHEDULE_SET_MODIFIERS(s, m) \
461  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462 #define SCHEDULE_NONMONOTONIC 0
463 #define SCHEDULE_MONOTONIC 1
464 
466 };
467 
468 // Apply modifiers on internal kind to standard kind
469 static inline void
470 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471  enum sched_type internal_kind) {
472  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474  }
475 }
476 
477 // Apply modifiers on standard kind to internal kind
478 static inline void
479 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480  enum sched_type *internal_kind) {
481  if ((int)kind & (int)kmp_sched_monotonic) {
482  *internal_kind = (enum sched_type)((int)*internal_kind |
484  }
485 }
486 
487 // Get standard schedule without modifiers
488 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490 }
491 
492 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493 typedef union kmp_r_sched {
494  struct {
495  enum sched_type r_sched_type;
496  int chunk;
497  };
498  kmp_int64 sched;
499 } kmp_r_sched_t;
500 
501 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502 // internal schedule types
503 
504 enum library_type {
505  library_none,
506  library_serial,
507  library_turnaround,
508  library_throughput
509 };
510 
511 #if KMP_OS_LINUX
512 enum clock_function_type {
513  clock_function_gettimeofday,
514  clock_function_clock_gettime
515 };
516 #endif /* KMP_OS_LINUX */
517 
518 #if KMP_MIC_SUPPORTED
519 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520 #endif
521 
522 /* -- fast reduction stuff ------------------------------------------------ */
523 
524 #undef KMP_FAST_REDUCTION_BARRIER
525 #define KMP_FAST_REDUCTION_BARRIER 1
526 
527 #undef KMP_FAST_REDUCTION_CORE_DUO
528 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
529 #define KMP_FAST_REDUCTION_CORE_DUO 1
530 #endif
531 
532 enum _reduction_method {
533  reduction_method_not_defined = 0,
534  critical_reduce_block = (1 << 8),
535  atomic_reduce_block = (2 << 8),
536  tree_reduce_block = (3 << 8),
537  empty_reduce_block = (4 << 8)
538 };
539 
540 // Description of the packed_reduction_method variable:
541 // The packed_reduction_method variable consists of two enum types variables
542 // that are packed together into 0-th byte and 1-st byte:
543 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544 // barrier that will be used in fast reduction: bs_plain_barrier or
545 // bs_reduction_barrier
546 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547 // be used in fast reduction;
548 // Reduction method is of 'enum _reduction_method' type and it's defined the way
549 // so that the bits of 0-th byte are empty, so no need to execute a shift
550 // instruction while packing/unpacking
551 
552 #if KMP_FAST_REDUCTION_BARRIER
553 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554  ((reduction_method) | (barrier_type))
555 
556 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558 
559 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561 #else
562 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563  (reduction_method)
564 
565 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566  (packed_reduction_method)
567 
568 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569 #endif
570 
571 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573  (which_reduction_block))
574 
575 #if KMP_FAST_REDUCTION_BARRIER
576 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578 
579 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581 #endif
582 
583 typedef int PACKED_REDUCTION_METHOD_T;
584 
585 /* -- end of fast reduction stuff ----------------------------------------- */
586 
587 #if KMP_OS_WINDOWS
588 #define USE_CBLKDATA
589 #if KMP_MSVC_COMPAT
590 #pragma warning(push)
591 #pragma warning(disable : 271 310)
592 #endif
593 #include <windows.h>
594 #if KMP_MSVC_COMPAT
595 #pragma warning(pop)
596 #endif
597 #endif
598 
599 #if KMP_OS_UNIX
600 #include <dlfcn.h>
601 #include <pthread.h>
602 #endif
603 
604 enum kmp_hw_t : int {
605  KMP_HW_UNKNOWN = -1,
606  KMP_HW_SOCKET = 0,
607  KMP_HW_PROC_GROUP,
608  KMP_HW_NUMA,
609  KMP_HW_DIE,
610  KMP_HW_LLC,
611  KMP_HW_L3,
612  KMP_HW_TILE,
613  KMP_HW_MODULE,
614  KMP_HW_L2,
615  KMP_HW_L1,
616  KMP_HW_CORE,
617  KMP_HW_THREAD,
618  KMP_HW_LAST
619 };
620 
621 typedef enum kmp_hw_core_type_t {
622  KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
624  KMP_HW_CORE_TYPE_ATOM = 0x20,
625  KMP_HW_CORE_TYPE_CORE = 0x40,
626  KMP_HW_MAX_NUM_CORE_TYPES = 3,
627 #else
628  KMP_HW_MAX_NUM_CORE_TYPES = 1,
629 #endif
630 } kmp_hw_core_type_t;
631 
632 #define KMP_HW_MAX_NUM_CORE_EFFS 8
633 
634 #define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
635  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636 #define KMP_ASSERT_VALID_HW_TYPE(type) \
637  KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638 
639 #define KMP_FOREACH_HW_TYPE(type) \
640  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
641  type = (kmp_hw_t)((int)type + 1))
642 
643 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646 
647 /* Only Linux* OS and Windows* OS support thread affinity. */
648 #if KMP_AFFINITY_SUPPORTED
649 
650 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651 #if KMP_OS_WINDOWS
652 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653 typedef struct GROUP_AFFINITY {
654  KAFFINITY Mask;
655  WORD Group;
656  WORD Reserved[3];
657 } GROUP_AFFINITY;
658 #endif /* _MSC_VER < 1600 */
659 #if KMP_GROUP_AFFINITY
660 extern int __kmp_num_proc_groups;
661 #else
662 static const int __kmp_num_proc_groups = 1;
663 #endif /* KMP_GROUP_AFFINITY */
664 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666 
667 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669 
670 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672 
673 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674  GROUP_AFFINITY *);
675 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676 #endif /* KMP_OS_WINDOWS */
677 
678 #if KMP_USE_HWLOC
679 extern hwloc_topology_t __kmp_hwloc_topology;
680 extern int __kmp_hwloc_error;
681 #endif
682 
683 extern size_t __kmp_affin_mask_size;
684 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687 #define KMP_CPU_SET_ITERATE(i, mask) \
688  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689 #define KMP_CPU_SET(i, mask) (mask)->set(i)
690 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692 #define KMP_CPU_ZERO(mask) (mask)->zero()
693 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
705  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706 #define KMP_CPU_FREE_ARRAY(arr, n) \
707  __kmp_affinity_dispatch->deallocate_mask_array(arr)
708 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710 #define __kmp_get_system_affinity(mask, abort_bool) \
711  (mask)->get_system_affinity(abort_bool)
712 #define __kmp_set_system_affinity(mask, abort_bool) \
713  (mask)->set_system_affinity(abort_bool)
714 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715 
716 class KMPAffinity {
717 public:
718  class Mask {
719  public:
720  void *operator new(size_t n);
721  void operator delete(void *p);
722  void *operator new[](size_t n);
723  void operator delete[](void *p);
724  virtual ~Mask() {}
725  // Set bit i to 1
726  virtual void set(int i) {}
727  // Return bit i
728  virtual bool is_set(int i) const { return false; }
729  // Set bit i to 0
730  virtual void clear(int i) {}
731  // Zero out entire mask
732  virtual void zero() {}
733  // Copy src into this mask
734  virtual void copy(const Mask *src) {}
735  // this &= rhs
736  virtual void bitwise_and(const Mask *rhs) {}
737  // this |= rhs
738  virtual void bitwise_or(const Mask *rhs) {}
739  // this = ~this
740  virtual void bitwise_not() {}
741  // API for iterating over an affinity mask
742  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743  virtual int begin() const { return 0; }
744  virtual int end() const { return 0; }
745  virtual int next(int previous) const { return 0; }
746 #if KMP_OS_WINDOWS
747  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748 #endif
749  // Set the system's affinity to this affinity mask's value
750  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751  // Set this affinity mask to the current system affinity
752  virtual int get_system_affinity(bool abort_on_error) { return -1; }
753  // Only 1 DWORD in the mask should have any procs set.
754  // Return the appropriate index, or -1 for an invalid mask.
755  virtual int get_proc_group() const { return -1; }
756  int get_max_cpu() const {
757  int cpu;
758  int max_cpu = -1;
759  KMP_CPU_SET_ITERATE(cpu, this) {
760  if (cpu > max_cpu)
761  max_cpu = cpu;
762  }
763  return max_cpu;
764  }
765  };
766  void *operator new(size_t n);
767  void operator delete(void *p);
768  // Need virtual destructor
769  virtual ~KMPAffinity() = default;
770  // Determine if affinity is capable
771  virtual void determine_capable(const char *env_var) {}
772  // Bind the current thread to os proc
773  virtual void bind_thread(int proc) {}
774  // Factory functions to allocate/deallocate a mask
775  virtual Mask *allocate_mask() { return nullptr; }
776  virtual void deallocate_mask(Mask *m) {}
777  virtual Mask *allocate_mask_array(int num) { return nullptr; }
778  virtual void deallocate_mask_array(Mask *m) {}
779  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
780  static void pick_api();
781  static void destroy_api();
782  enum api_type {
783  NATIVE_OS
784 #if KMP_USE_HWLOC
785  ,
786  HWLOC
787 #endif
788  };
789  virtual api_type get_api_type() const {
790  KMP_ASSERT(0);
791  return NATIVE_OS;
792  }
793 
794 private:
795  static bool picked_api;
796 };
797 
798 typedef KMPAffinity::Mask kmp_affin_mask_t;
799 extern KMPAffinity *__kmp_affinity_dispatch;
800 
801 class kmp_affinity_raii_t {
802  kmp_affin_mask_t *mask;
803  bool restored;
804 
805 public:
806  kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
807  : restored(false) {
808  if (KMP_AFFINITY_CAPABLE()) {
809  KMP_CPU_ALLOC(mask);
810  KMP_ASSERT(mask != NULL);
811  __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
812  if (new_mask)
813  __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
814  }
815  }
816  void restore() {
817  if (!restored && KMP_AFFINITY_CAPABLE()) {
818  __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
819  KMP_CPU_FREE(mask);
820  }
821  restored = true;
822  }
823  ~kmp_affinity_raii_t() { restore(); }
824 };
825 
826 // Declare local char buffers with this size for printing debug and info
827 // messages, using __kmp_affinity_print_mask().
828 #define KMP_AFFIN_MASK_PRINT_LEN 1024
829 
830 enum affinity_type {
831  affinity_none = 0,
832  affinity_physical,
833  affinity_logical,
834  affinity_compact,
835  affinity_scatter,
836  affinity_explicit,
837  affinity_balanced,
838  affinity_disabled, // not used outsize the env var parser
839  affinity_default
840 };
841 
842 enum affinity_top_method {
843  affinity_top_method_all = 0, // try all (supported) methods, in order
844 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
845  affinity_top_method_apicid,
846  affinity_top_method_x2apicid,
847  affinity_top_method_x2apicid_1f,
848 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
849  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
850 #if KMP_GROUP_AFFINITY
851  affinity_top_method_group,
852 #endif /* KMP_GROUP_AFFINITY */
853  affinity_top_method_flat,
854 #if KMP_USE_HWLOC
855  affinity_top_method_hwloc,
856 #endif
857  affinity_top_method_default
858 };
859 
860 #define affinity_respect_mask_default (2)
861 
862 typedef struct kmp_affinity_flags_t {
863  unsigned dups : 1;
864  unsigned verbose : 1;
865  unsigned warnings : 1;
866  unsigned respect : 2;
867  unsigned reset : 1;
868  unsigned initialized : 1;
869  unsigned reserved : 25;
870 } kmp_affinity_flags_t;
871 KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
872 
873 typedef struct kmp_affinity_ids_t {
874  int ids[KMP_HW_LAST];
875  int operator[](size_t idx) const { return ids[idx]; }
876  int &operator[](size_t idx) { return ids[idx]; }
877  kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
878  for (int i = 0; i < KMP_HW_LAST; ++i)
879  ids[i] = rhs[i];
880  return *this;
881  }
882 } kmp_affinity_ids_t;
883 
884 typedef struct kmp_affinity_attrs_t {
885  int core_type : 8;
886  int core_eff : 8;
887  unsigned valid : 1;
888  unsigned reserved : 15;
889 } kmp_affinity_attrs_t;
890 #define KMP_AFFINITY_ATTRS_UNKNOWN \
891  { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
892 
893 typedef struct kmp_affinity_t {
894  char *proclist;
895  enum affinity_type type;
896  kmp_hw_t gran;
897  int gran_levels;
898  int compact;
899  int offset;
900  kmp_affinity_flags_t flags;
901  unsigned num_masks;
902  kmp_affin_mask_t *masks;
903  kmp_affinity_ids_t *ids;
904  kmp_affinity_attrs_t *attrs;
905  unsigned num_os_id_masks;
906  kmp_affin_mask_t *os_id_masks;
907  const char *env_var;
908 } kmp_affinity_t;
909 
910 #define KMP_AFFINITY_INIT(env) \
911  { \
912  nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, \
913  {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE}, 0, \
914  nullptr, nullptr, nullptr, 0, nullptr, env \
915  }
916 
917 extern enum affinity_top_method __kmp_affinity_top_method;
918 extern kmp_affinity_t __kmp_affinity;
919 extern kmp_affinity_t __kmp_hh_affinity;
920 extern kmp_affinity_t *__kmp_affinities[2];
921 
922 extern void __kmp_affinity_bind_thread(int which);
923 
924 extern kmp_affin_mask_t *__kmp_affin_fullMask;
925 extern kmp_affin_mask_t *__kmp_affin_origMask;
926 extern char *__kmp_cpuinfo_file;
927 
928 #endif /* KMP_AFFINITY_SUPPORTED */
929 
930 // This needs to be kept in sync with the values in omp.h !!!
931 typedef enum kmp_proc_bind_t {
932  proc_bind_false = 0,
933  proc_bind_true,
934  proc_bind_primary,
935  proc_bind_close,
936  proc_bind_spread,
937  proc_bind_intel, // use KMP_AFFINITY interface
938  proc_bind_default
939 } kmp_proc_bind_t;
940 
941 typedef struct kmp_nested_proc_bind_t {
942  kmp_proc_bind_t *bind_types;
943  int size;
944  int used;
945 } kmp_nested_proc_bind_t;
946 
947 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
948 extern kmp_proc_bind_t __kmp_teams_proc_bind;
949 
950 extern int __kmp_display_affinity;
951 extern char *__kmp_affinity_format;
952 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
953 #if OMPT_SUPPORT
954 extern int __kmp_tool;
955 extern char *__kmp_tool_libraries;
956 #endif // OMPT_SUPPORT
957 
958 #if KMP_AFFINITY_SUPPORTED
959 #define KMP_PLACE_ALL (-1)
960 #define KMP_PLACE_UNDEFINED (-2)
961 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
962 #define KMP_AFFINITY_NON_PROC_BIND \
963  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
964  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
965  (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
966 #endif /* KMP_AFFINITY_SUPPORTED */
967 
968 extern int __kmp_affinity_num_places;
969 
970 typedef enum kmp_cancel_kind_t {
971  cancel_noreq = 0,
972  cancel_parallel = 1,
973  cancel_loop = 2,
974  cancel_sections = 3,
975  cancel_taskgroup = 4
976 } kmp_cancel_kind_t;
977 
978 // KMP_HW_SUBSET support:
979 typedef struct kmp_hws_item {
980  int num;
981  int offset;
982 } kmp_hws_item_t;
983 
984 extern kmp_hws_item_t __kmp_hws_socket;
985 extern kmp_hws_item_t __kmp_hws_die;
986 extern kmp_hws_item_t __kmp_hws_node;
987 extern kmp_hws_item_t __kmp_hws_tile;
988 extern kmp_hws_item_t __kmp_hws_core;
989 extern kmp_hws_item_t __kmp_hws_proc;
990 extern int __kmp_hws_requested;
991 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
992 
993 /* ------------------------------------------------------------------------ */
994 
995 #define KMP_PAD(type, sz) \
996  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
997 
998 // We need to avoid using -1 as a GTID as +1 is added to the gtid
999 // when storing it in a lock, and the value 0 is reserved.
1000 #define KMP_GTID_DNE (-2) /* Does not exist */
1001 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1002 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1003 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
1004 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1005 
1006 /* OpenMP 5.0 Memory Management support */
1007 
1008 #ifndef __OMP_H
1009 // Duplicate type definitions from omp.h
1010 typedef uintptr_t omp_uintptr_t;
1011 
1012 typedef enum {
1013  omp_atk_sync_hint = 1,
1014  omp_atk_alignment = 2,
1015  omp_atk_access = 3,
1016  omp_atk_pool_size = 4,
1017  omp_atk_fallback = 5,
1018  omp_atk_fb_data = 6,
1019  omp_atk_pinned = 7,
1020  omp_atk_partition = 8
1021 } omp_alloctrait_key_t;
1022 
1023 typedef enum {
1024  omp_atv_false = 0,
1025  omp_atv_true = 1,
1026  omp_atv_contended = 3,
1027  omp_atv_uncontended = 4,
1028  omp_atv_serialized = 5,
1029  omp_atv_sequential = omp_atv_serialized, // (deprecated)
1030  omp_atv_private = 6,
1031  omp_atv_all = 7,
1032  omp_atv_thread = 8,
1033  omp_atv_pteam = 9,
1034  omp_atv_cgroup = 10,
1035  omp_atv_default_mem_fb = 11,
1036  omp_atv_null_fb = 12,
1037  omp_atv_abort_fb = 13,
1038  omp_atv_allocator_fb = 14,
1039  omp_atv_environment = 15,
1040  omp_atv_nearest = 16,
1041  omp_atv_blocked = 17,
1042  omp_atv_interleaved = 18
1043 } omp_alloctrait_value_t;
1044 #define omp_atv_default ((omp_uintptr_t)-1)
1045 
1046 typedef void *omp_memspace_handle_t;
1047 extern omp_memspace_handle_t const omp_default_mem_space;
1048 extern omp_memspace_handle_t const omp_large_cap_mem_space;
1049 extern omp_memspace_handle_t const omp_const_mem_space;
1050 extern omp_memspace_handle_t const omp_high_bw_mem_space;
1051 extern omp_memspace_handle_t const omp_low_lat_mem_space;
1052 extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1053 extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1054 extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1055 
1056 typedef struct {
1057  omp_alloctrait_key_t key;
1058  omp_uintptr_t value;
1059 } omp_alloctrait_t;
1060 
1061 typedef void *omp_allocator_handle_t;
1062 extern omp_allocator_handle_t const omp_null_allocator;
1063 extern omp_allocator_handle_t const omp_default_mem_alloc;
1064 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1065 extern omp_allocator_handle_t const omp_const_mem_alloc;
1066 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1067 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1068 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1069 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1070 extern omp_allocator_handle_t const omp_thread_mem_alloc;
1071 extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1072 extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1073 extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1074 extern omp_allocator_handle_t const kmp_max_mem_alloc;
1075 extern omp_allocator_handle_t __kmp_def_allocator;
1076 
1077 // end of duplicate type definitions from omp.h
1078 #endif
1079 
1080 extern int __kmp_memkind_available;
1081 
1082 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1083 
1084 typedef struct kmp_allocator_t {
1085  omp_memspace_handle_t memspace;
1086  void **memkind; // pointer to memkind
1087  size_t alignment;
1088  omp_alloctrait_value_t fb;
1089  kmp_allocator_t *fb_data;
1090  kmp_uint64 pool_size;
1091  kmp_uint64 pool_used;
1092  bool pinned;
1093 } kmp_allocator_t;
1094 
1095 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1096  omp_memspace_handle_t,
1097  int ntraits,
1098  omp_alloctrait_t traits[]);
1099 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1100 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1101 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1102 // external interfaces, may be used by compiler
1103 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1104 extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1105  omp_allocator_handle_t al);
1106 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1107  omp_allocator_handle_t al);
1108 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1109  omp_allocator_handle_t al,
1110  omp_allocator_handle_t free_al);
1111 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1112 // internal interfaces, contain real implementation
1113 extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1114  omp_allocator_handle_t al);
1115 extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1116  omp_allocator_handle_t al);
1117 extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1118  omp_allocator_handle_t al,
1119  omp_allocator_handle_t free_al);
1120 extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1121 
1122 extern void __kmp_init_memkind();
1123 extern void __kmp_fini_memkind();
1124 extern void __kmp_init_target_mem();
1125 
1126 /* ------------------------------------------------------------------------ */
1127 
1128 #if ENABLE_LIBOMPTARGET
1129 extern void __kmp_init_target_task();
1130 #endif
1131 
1132 /* ------------------------------------------------------------------------ */
1133 
1134 #define KMP_UINT64_MAX \
1135  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1136 
1137 #define KMP_MIN_NTH 1
1138 
1139 #ifndef KMP_MAX_NTH
1140 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1141 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1142 #else
1143 #define KMP_MAX_NTH INT_MAX
1144 #endif
1145 #endif /* KMP_MAX_NTH */
1146 
1147 #ifdef PTHREAD_STACK_MIN
1148 #define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1149 #else
1150 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1151 #endif
1152 
1153 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1154 
1155 #if KMP_ARCH_X86
1156 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1157 #elif KMP_ARCH_X86_64
1158 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1159 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1160 #else
1161 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1162 #endif
1163 
1164 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1165 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1166 #define KMP_MAX_MALLOC_POOL_INCR \
1167  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1168 
1169 #define KMP_MIN_STKOFFSET (0)
1170 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1171 #if KMP_OS_DARWIN
1172 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1173 #else
1174 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1175 #endif
1176 
1177 #define KMP_MIN_STKPADDING (0)
1178 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1179 
1180 #define KMP_BLOCKTIME_MULTIPLIER \
1181  (1000) /* number of blocktime units per second */
1182 #define KMP_MIN_BLOCKTIME (0)
1183 #define KMP_MAX_BLOCKTIME \
1184  (INT_MAX) /* Must be this for "infinite" setting the work */
1185 
1186 /* __kmp_blocktime is in milliseconds */
1187 #define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1188 
1189 #if KMP_USE_MONITOR
1190 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1191 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1192 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1193 
1194 /* Calculate new number of monitor wakeups for a specific block time based on
1195  previous monitor_wakeups. Only allow increasing number of wakeups */
1196 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1197  (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1198  : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1199  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1200  ? (monitor_wakeups) \
1201  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1202 
1203 /* Calculate number of intervals for a specific block time based on
1204  monitor_wakeups */
1205 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1206  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1207  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1208 #else
1209 #define KMP_BLOCKTIME(team, tid) \
1210  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1211 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1212 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1213 extern kmp_uint64 __kmp_ticks_per_msec;
1214 #if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1215 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1216 #else
1217 #define KMP_NOW() __kmp_hardware_timestamp()
1218 #endif
1219 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1220 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1221  (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1222 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1223 #else
1224 // System time is retrieved sporadically while blocking.
1225 extern kmp_uint64 __kmp_now_nsec();
1226 #define KMP_NOW() __kmp_now_nsec()
1227 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1228 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1229  (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1230 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1231 #endif
1232 #endif // KMP_USE_MONITOR
1233 
1234 #define KMP_MIN_STATSCOLS 40
1235 #define KMP_MAX_STATSCOLS 4096
1236 #define KMP_DEFAULT_STATSCOLS 80
1237 
1238 #define KMP_MIN_INTERVAL 0
1239 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1240 #define KMP_DEFAULT_INTERVAL 0
1241 
1242 #define KMP_MIN_CHUNK 1
1243 #define KMP_MAX_CHUNK (INT_MAX - 1)
1244 #define KMP_DEFAULT_CHUNK 1
1245 
1246 #define KMP_MIN_DISP_NUM_BUFF 1
1247 #define KMP_DFLT_DISP_NUM_BUFF 7
1248 #define KMP_MAX_DISP_NUM_BUFF 4096
1249 
1250 #define KMP_MAX_ORDERED 8
1251 
1252 #define KMP_MAX_FIELDS 32
1253 
1254 #define KMP_MAX_BRANCH_BITS 31
1255 
1256 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1257 
1258 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1259 
1260 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1261 
1262 /* Minimum number of threads before switch to TLS gtid (experimentally
1263  determined) */
1264 /* josh TODO: what about OS X* tuning? */
1265 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1266 #define KMP_TLS_GTID_MIN 5
1267 #else
1268 #define KMP_TLS_GTID_MIN INT_MAX
1269 #endif
1270 
1271 #define KMP_MASTER_TID(tid) (0 == (tid))
1272 #define KMP_WORKER_TID(tid) (0 != (tid))
1273 
1274 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1275 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1276 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1277 
1278 #ifndef TRUE
1279 #define FALSE 0
1280 #define TRUE (!FALSE)
1281 #endif
1282 
1283 /* NOTE: all of the following constants must be even */
1284 
1285 #if KMP_OS_WINDOWS
1286 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1287 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1288 #elif KMP_OS_LINUX
1289 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1290 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1291 #elif KMP_OS_DARWIN
1292 /* TODO: tune for KMP_OS_DARWIN */
1293 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1294 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1295 #elif KMP_OS_DRAGONFLY
1296 /* TODO: tune for KMP_OS_DRAGONFLY */
1297 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1298 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1299 #elif KMP_OS_FREEBSD
1300 /* TODO: tune for KMP_OS_FREEBSD */
1301 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1302 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1303 #elif KMP_OS_NETBSD
1304 /* TODO: tune for KMP_OS_NETBSD */
1305 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1306 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1307 #elif KMP_OS_HURD
1308 /* TODO: tune for KMP_OS_HURD */
1309 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1310 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1311 #elif KMP_OS_OPENBSD
1312 /* TODO: tune for KMP_OS_OPENBSD */
1313 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1314 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1315 #endif
1316 
1317 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1318 typedef struct kmp_cpuid {
1319  kmp_uint32 eax;
1320  kmp_uint32 ebx;
1321  kmp_uint32 ecx;
1322  kmp_uint32 edx;
1323 } kmp_cpuid_t;
1324 
1325 typedef struct kmp_cpuinfo_flags_t {
1326  unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1327  unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1328  unsigned hybrid : 1;
1329  unsigned reserved : 29; // Ensure size of 32 bits
1330 } kmp_cpuinfo_flags_t;
1331 
1332 typedef struct kmp_cpuinfo {
1333  int initialized; // If 0, other fields are not initialized.
1334  int signature; // CPUID(1).EAX
1335  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1336  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1337  // Model << 4 ) + Model)
1338  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1339  kmp_cpuinfo_flags_t flags;
1340  int apic_id;
1341  int physical_id;
1342  int logical_id;
1343  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1344  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1345 } kmp_cpuinfo_t;
1346 
1347 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1348 
1349 #if KMP_OS_UNIX
1350 // subleaf is only needed for cache and topology discovery and can be set to
1351 // zero in most cases
1352 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1353  __asm__ __volatile__("cpuid"
1354  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1355  : "a"(leaf), "c"(subleaf));
1356 }
1357 // Load p into FPU control word
1358 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1359  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1360 }
1361 // Store FPU control word into p
1362 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1363  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1364 }
1365 static inline void __kmp_clear_x87_fpu_status_word() {
1366 #if KMP_MIC
1367  // 32-bit protected mode x87 FPU state
1368  struct x87_fpu_state {
1369  unsigned cw;
1370  unsigned sw;
1371  unsigned tw;
1372  unsigned fip;
1373  unsigned fips;
1374  unsigned fdp;
1375  unsigned fds;
1376  };
1377  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1378  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1379  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1380  "fldenv %0\n\t" // load FP env back
1381  : "+m"(fpu_state), "+m"(fpu_state.sw));
1382 #else
1383  __asm__ __volatile__("fnclex");
1384 #endif // KMP_MIC
1385 }
1386 #if __SSE__
1387 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1388 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1389 #else
1390 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1391 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1392 #endif
1393 #else
1394 // Windows still has these as external functions in assembly file
1395 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1396 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1397 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1398 extern void __kmp_clear_x87_fpu_status_word();
1399 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1400 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1401 #endif // KMP_OS_UNIX
1402 
1403 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1404 
1405 // User-level Monitor/Mwait
1406 #if KMP_HAVE_UMWAIT
1407 // We always try for UMWAIT first
1408 #if KMP_HAVE_WAITPKG_INTRINSICS
1409 #if KMP_HAVE_IMMINTRIN_H
1410 #include <immintrin.h>
1411 #elif KMP_HAVE_INTRIN_H
1412 #include <intrin.h>
1413 #endif
1414 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1415 
1416 KMP_ATTRIBUTE_TARGET_WAITPKG
1417 static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1418 #if !KMP_HAVE_WAITPKG_INTRINSICS
1419  uint32_t timeHi = uint32_t(counter >> 32);
1420  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1421  char flag;
1422  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1423  "setb %0"
1424  // The "=q" restraint means any register accessible as rl
1425  // in 32-bit mode: a, b, c, and d;
1426  // in 64-bit mode: any integer register
1427  : "=q"(flag)
1428  : "a"(timeLo), "d"(timeHi), "c"(hint)
1429  :);
1430  return flag;
1431 #else
1432  return _tpause(hint, counter);
1433 #endif
1434 }
1435 KMP_ATTRIBUTE_TARGET_WAITPKG
1436 static inline void __kmp_umonitor(void *cacheline) {
1437 #if !KMP_HAVE_WAITPKG_INTRINSICS
1438  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1439  :
1440  : "a"(cacheline)
1441  :);
1442 #else
1443  _umonitor(cacheline);
1444 #endif
1445 }
1446 KMP_ATTRIBUTE_TARGET_WAITPKG
1447 static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1448 #if !KMP_HAVE_WAITPKG_INTRINSICS
1449  uint32_t timeHi = uint32_t(counter >> 32);
1450  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1451  char flag;
1452  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1453  "setb %0"
1454  // The "=q" restraint means any register accessible as rl
1455  // in 32-bit mode: a, b, c, and d;
1456  // in 64-bit mode: any integer register
1457  : "=q"(flag)
1458  : "a"(timeLo), "d"(timeHi), "c"(hint)
1459  :);
1460  return flag;
1461 #else
1462  return _umwait(hint, counter);
1463 #endif
1464 }
1465 #elif KMP_HAVE_MWAIT
1466 #if KMP_OS_UNIX
1467 #include <pmmintrin.h>
1468 #else
1469 #include <intrin.h>
1470 #endif
1471 #if KMP_OS_UNIX
1472 __attribute__((target("sse3")))
1473 #endif
1474 static inline void
1475 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1476  _mm_monitor(cacheline, extensions, hints);
1477 }
1478 #if KMP_OS_UNIX
1479 __attribute__((target("sse3")))
1480 #endif
1481 static inline void
1482 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1483  _mm_mwait(extensions, hints);
1484 }
1485 #endif // KMP_HAVE_UMWAIT
1486 
1487 #if KMP_ARCH_X86
1488 extern void __kmp_x86_pause(void);
1489 #elif KMP_MIC
1490 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1491 // regression after removal of extra PAUSE from spin loops. Changing
1492 // the delay from 100 to 300 showed even better performance than double PAUSE
1493 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1494 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1495 #else
1496 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1497 #endif
1498 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1499 #elif KMP_ARCH_PPC64
1500 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1501 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1502 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1503 #define KMP_CPU_PAUSE() \
1504  do { \
1505  KMP_PPC64_PRI_LOW(); \
1506  KMP_PPC64_PRI_MED(); \
1507  KMP_PPC64_PRI_LOC_MB(); \
1508  } while (0)
1509 #else
1510 #define KMP_CPU_PAUSE() /* nothing to do */
1511 #endif
1512 
1513 #define KMP_INIT_YIELD(count) \
1514  { (count) = __kmp_yield_init; }
1515 
1516 #define KMP_INIT_BACKOFF(time) \
1517  { (time) = __kmp_pause_init; }
1518 
1519 #define KMP_OVERSUBSCRIBED \
1520  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1521 
1522 #define KMP_TRY_YIELD \
1523  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1524 
1525 #define KMP_TRY_YIELD_OVERSUB \
1526  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1527 
1528 #define KMP_YIELD(cond) \
1529  { \
1530  KMP_CPU_PAUSE(); \
1531  if ((cond) && (KMP_TRY_YIELD)) \
1532  __kmp_yield(); \
1533  }
1534 
1535 #define KMP_YIELD_OVERSUB() \
1536  { \
1537  KMP_CPU_PAUSE(); \
1538  if ((KMP_TRY_YIELD_OVERSUB)) \
1539  __kmp_yield(); \
1540  }
1541 
1542 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1543 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1544 #define KMP_YIELD_SPIN(count) \
1545  { \
1546  KMP_CPU_PAUSE(); \
1547  if (KMP_TRY_YIELD) { \
1548  (count) -= 2; \
1549  if (!(count)) { \
1550  __kmp_yield(); \
1551  (count) = __kmp_yield_next; \
1552  } \
1553  } \
1554  }
1555 
1556 // If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1557 // (C0.2) state, which improves performance of other SMT threads on the same
1558 // core, otherwise, use the fast (C0.1) default state, or whatever the user has
1559 // requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1560 // available, fall back to the regular CPU pause and yield combination.
1561 #if KMP_HAVE_UMWAIT
1562 #define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1563 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1564  { \
1565  if (__kmp_tpause_enabled) { \
1566  if (KMP_OVERSUBSCRIBED) { \
1567  __kmp_tpause(0, (time)); \
1568  } else { \
1569  __kmp_tpause(__kmp_tpause_hint, (time)); \
1570  } \
1571  (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1572  } else { \
1573  KMP_CPU_PAUSE(); \
1574  if ((KMP_TRY_YIELD_OVERSUB)) { \
1575  __kmp_yield(); \
1576  } else if (__kmp_use_yield == 1) { \
1577  (count) -= 2; \
1578  if (!(count)) { \
1579  __kmp_yield(); \
1580  (count) = __kmp_yield_next; \
1581  } \
1582  } \
1583  } \
1584  }
1585 #else
1586 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1587  { \
1588  KMP_CPU_PAUSE(); \
1589  if ((KMP_TRY_YIELD_OVERSUB)) \
1590  __kmp_yield(); \
1591  else if (__kmp_use_yield == 1) { \
1592  (count) -= 2; \
1593  if (!(count)) { \
1594  __kmp_yield(); \
1595  (count) = __kmp_yield_next; \
1596  } \
1597  } \
1598  }
1599 #endif // KMP_HAVE_UMWAIT
1600 
1601 /* ------------------------------------------------------------------------ */
1602 /* Support datatypes for the orphaned construct nesting checks. */
1603 /* ------------------------------------------------------------------------ */
1604 
1605 /* When adding to this enum, add its corresponding string in cons_text_c[]
1606  * array in kmp_error.cpp */
1607 enum cons_type {
1608  ct_none,
1609  ct_parallel,
1610  ct_pdo,
1611  ct_pdo_ordered,
1612  ct_psections,
1613  ct_psingle,
1614  ct_critical,
1615  ct_ordered_in_parallel,
1616  ct_ordered_in_pdo,
1617  ct_master,
1618  ct_reduce,
1619  ct_barrier,
1620  ct_masked
1621 };
1622 
1623 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1624 
1625 struct cons_data {
1626  ident_t const *ident;
1627  enum cons_type type;
1628  int prev;
1629  kmp_user_lock_p
1630  name; /* address exclusively for critical section name comparison */
1631 };
1632 
1633 struct cons_header {
1634  int p_top, w_top, s_top;
1635  int stack_size, stack_top;
1636  struct cons_data *stack_data;
1637 };
1638 
1639 struct kmp_region_info {
1640  char *text;
1641  int offset[KMP_MAX_FIELDS];
1642  int length[KMP_MAX_FIELDS];
1643 };
1644 
1645 /* ---------------------------------------------------------------------- */
1646 /* ---------------------------------------------------------------------- */
1647 
1648 #if KMP_OS_WINDOWS
1649 typedef HANDLE kmp_thread_t;
1650 typedef DWORD kmp_key_t;
1651 #endif /* KMP_OS_WINDOWS */
1652 
1653 #if KMP_OS_UNIX
1654 typedef pthread_t kmp_thread_t;
1655 typedef pthread_key_t kmp_key_t;
1656 #endif
1657 
1658 extern kmp_key_t __kmp_gtid_threadprivate_key;
1659 
1660 typedef struct kmp_sys_info {
1661  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1662  long minflt; /* the number of page faults serviced without any I/O */
1663  long majflt; /* the number of page faults serviced that required I/O */
1664  long nswap; /* the number of times a process was "swapped" out of memory */
1665  long inblock; /* the number of times the file system had to perform input */
1666  long oublock; /* the number of times the file system had to perform output */
1667  long nvcsw; /* the number of times a context switch was voluntarily */
1668  long nivcsw; /* the number of times a context switch was forced */
1669 } kmp_sys_info_t;
1670 
1671 #if USE_ITT_BUILD
1672 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1673 // required type here. Later we will check the type meets requirements.
1674 typedef int kmp_itt_mark_t;
1675 #define KMP_ITT_DEBUG 0
1676 #endif /* USE_ITT_BUILD */
1677 
1678 typedef kmp_int32 kmp_critical_name[8];
1679 
1689 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1690 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1691  ...);
1692 
1697 /* ---------------------------------------------------------------------------
1698  */
1699 /* Threadprivate initialization/finalization function declarations */
1700 
1701 /* for non-array objects: __kmpc_threadprivate_register() */
1702 
1707 typedef void *(*kmpc_ctor)(void *);
1708 
1713 typedef void (*kmpc_dtor)(
1714  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1715  compiler */
1720 typedef void *(*kmpc_cctor)(void *, void *);
1721 
1722 /* for array objects: __kmpc_threadprivate_register_vec() */
1723 /* First arg: "this" pointer */
1724 /* Last arg: number of array elements */
1730 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1736 typedef void (*kmpc_dtor_vec)(void *, size_t);
1742 typedef void *(*kmpc_cctor_vec)(void *, void *,
1743  size_t); /* function unused by compiler */
1744 
1749 /* keeps tracked of threadprivate cache allocations for cleanup later */
1750 typedef struct kmp_cached_addr {
1751  void **addr; /* address of allocated cache */
1752  void ***compiler_cache; /* pointer to compiler's cache */
1753  void *data; /* pointer to global data */
1754  struct kmp_cached_addr *next; /* pointer to next cached address */
1755 } kmp_cached_addr_t;
1756 
1757 struct private_data {
1758  struct private_data *next; /* The next descriptor in the list */
1759  void *data; /* The data buffer for this descriptor */
1760  int more; /* The repeat count for this descriptor */
1761  size_t size; /* The data size for this descriptor */
1762 };
1763 
1764 struct private_common {
1765  struct private_common *next;
1766  struct private_common *link;
1767  void *gbl_addr;
1768  void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1769  size_t cmn_size;
1770 };
1771 
1772 struct shared_common {
1773  struct shared_common *next;
1774  struct private_data *pod_init;
1775  void *obj_init;
1776  void *gbl_addr;
1777  union {
1778  kmpc_ctor ctor;
1779  kmpc_ctor_vec ctorv;
1780  } ct;
1781  union {
1782  kmpc_cctor cctor;
1783  kmpc_cctor_vec cctorv;
1784  } cct;
1785  union {
1786  kmpc_dtor dtor;
1787  kmpc_dtor_vec dtorv;
1788  } dt;
1789  size_t vec_len;
1790  int is_vec;
1791  size_t cmn_size;
1792 };
1793 
1794 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1795 #define KMP_HASH_TABLE_SIZE \
1796  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1797 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1798 #define KMP_HASH(x) \
1799  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1800 
1801 struct common_table {
1802  struct private_common *data[KMP_HASH_TABLE_SIZE];
1803 };
1804 
1805 struct shared_table {
1806  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1807 };
1808 
1809 /* ------------------------------------------------------------------------ */
1810 
1811 #if KMP_USE_HIER_SCHED
1812 // Shared barrier data that exists inside a single unit of the scheduling
1813 // hierarchy
1814 typedef struct kmp_hier_private_bdata_t {
1815  kmp_int32 num_active;
1816  kmp_uint64 index;
1817  kmp_uint64 wait_val[2];
1818 } kmp_hier_private_bdata_t;
1819 #endif
1820 
1821 typedef struct kmp_sched_flags {
1822  unsigned ordered : 1;
1823  unsigned nomerge : 1;
1824  unsigned contains_last : 1;
1825 #if KMP_USE_HIER_SCHED
1826  unsigned use_hier : 1;
1827  unsigned unused : 28;
1828 #else
1829  unsigned unused : 29;
1830 #endif
1831 } kmp_sched_flags_t;
1832 
1833 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1834 
1835 #if KMP_STATIC_STEAL_ENABLED
1836 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1837  kmp_int32 count;
1838  kmp_int32 ub;
1839  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1840  kmp_int32 lb;
1841  kmp_int32 st;
1842  kmp_int32 tc;
1843  kmp_lock_t *steal_lock; // lock used for chunk stealing
1844  // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1845  // a) parm3 is properly aligned and
1846  // b) all parm1-4 are on the same cache line.
1847  // Because of parm1-4 are used together, performance seems to be better
1848  // if they are on the same cache line (not measured though).
1849 
1850  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1851  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1852  kmp_int32 parm2; // make no real change at least while padding is off.
1853  kmp_int32 parm3;
1854  kmp_int32 parm4;
1855  };
1856 
1857  kmp_uint32 ordered_lower;
1858  kmp_uint32 ordered_upper;
1859 #if KMP_OS_WINDOWS
1860  kmp_int32 last_upper;
1861 #endif /* KMP_OS_WINDOWS */
1862 } dispatch_private_info32_t;
1863 
1864 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1865  kmp_int64 count; // current chunk number for static & static-steal scheduling
1866  kmp_int64 ub; /* upper-bound */
1867  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1868  kmp_int64 lb; /* lower-bound */
1869  kmp_int64 st; /* stride */
1870  kmp_int64 tc; /* trip count (number of iterations) */
1871  kmp_lock_t *steal_lock; // lock used for chunk stealing
1872  /* parm[1-4] are used in different ways by different scheduling algorithms */
1873 
1874  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1875  // a) parm3 is properly aligned and
1876  // b) all parm1-4 are in the same cache line.
1877  // Because of parm1-4 are used together, performance seems to be better
1878  // if they are in the same line (not measured though).
1879 
1880  struct KMP_ALIGN(32) {
1881  kmp_int64 parm1;
1882  kmp_int64 parm2;
1883  kmp_int64 parm3;
1884  kmp_int64 parm4;
1885  };
1886 
1887  kmp_uint64 ordered_lower;
1888  kmp_uint64 ordered_upper;
1889 #if KMP_OS_WINDOWS
1890  kmp_int64 last_upper;
1891 #endif /* KMP_OS_WINDOWS */
1892 } dispatch_private_info64_t;
1893 #else /* KMP_STATIC_STEAL_ENABLED */
1894 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1895  kmp_int32 lb;
1896  kmp_int32 ub;
1897  kmp_int32 st;
1898  kmp_int32 tc;
1899 
1900  kmp_int32 parm1;
1901  kmp_int32 parm2;
1902  kmp_int32 parm3;
1903  kmp_int32 parm4;
1904 
1905  kmp_int32 count;
1906 
1907  kmp_uint32 ordered_lower;
1908  kmp_uint32 ordered_upper;
1909 #if KMP_OS_WINDOWS
1910  kmp_int32 last_upper;
1911 #endif /* KMP_OS_WINDOWS */
1912 } dispatch_private_info32_t;
1913 
1914 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1915  kmp_int64 lb; /* lower-bound */
1916  kmp_int64 ub; /* upper-bound */
1917  kmp_int64 st; /* stride */
1918  kmp_int64 tc; /* trip count (number of iterations) */
1919 
1920  /* parm[1-4] are used in different ways by different scheduling algorithms */
1921  kmp_int64 parm1;
1922  kmp_int64 parm2;
1923  kmp_int64 parm3;
1924  kmp_int64 parm4;
1925 
1926  kmp_int64 count; /* current chunk number for static scheduling */
1927 
1928  kmp_uint64 ordered_lower;
1929  kmp_uint64 ordered_upper;
1930 #if KMP_OS_WINDOWS
1931  kmp_int64 last_upper;
1932 #endif /* KMP_OS_WINDOWS */
1933 } dispatch_private_info64_t;
1934 #endif /* KMP_STATIC_STEAL_ENABLED */
1935 
1936 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1937  union private_info {
1938  dispatch_private_info32_t p32;
1939  dispatch_private_info64_t p64;
1940  } u;
1941  enum sched_type schedule; /* scheduling algorithm */
1942  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1943  std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1944  kmp_int32 ordered_bumped;
1945  // Stack of buffers for nest of serial regions
1946  struct dispatch_private_info *next;
1947  kmp_int32 type_size; /* the size of types in private_info */
1948 #if KMP_USE_HIER_SCHED
1949  kmp_int32 hier_id;
1950  void *parent; /* hierarchical scheduling parent pointer */
1951 #endif
1952  enum cons_type pushed_ws;
1953 } dispatch_private_info_t;
1954 
1955 typedef struct dispatch_shared_info32 {
1956  /* chunk index under dynamic, number of idle threads under static-steal;
1957  iteration index otherwise */
1958  volatile kmp_uint32 iteration;
1959  volatile kmp_int32 num_done;
1960  volatile kmp_uint32 ordered_iteration;
1961  // Dummy to retain the structure size after making ordered_iteration scalar
1962  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1963 } dispatch_shared_info32_t;
1964 
1965 typedef struct dispatch_shared_info64 {
1966  /* chunk index under dynamic, number of idle threads under static-steal;
1967  iteration index otherwise */
1968  volatile kmp_uint64 iteration;
1969  volatile kmp_int64 num_done;
1970  volatile kmp_uint64 ordered_iteration;
1971  // Dummy to retain the structure size after making ordered_iteration scalar
1972  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1973 } dispatch_shared_info64_t;
1974 
1975 typedef struct dispatch_shared_info {
1976  union shared_info {
1977  dispatch_shared_info32_t s32;
1978  dispatch_shared_info64_t s64;
1979  } u;
1980  volatile kmp_uint32 buffer_index;
1981  volatile kmp_int32 doacross_buf_idx; // teamwise index
1982  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1983  kmp_int32 doacross_num_done; // count finished threads
1984 #if KMP_USE_HIER_SCHED
1985  void *hier;
1986 #endif
1987 #if KMP_USE_HWLOC
1988  // When linking with libhwloc, the ORDERED EPCC test slows down on big
1989  // machines (> 48 cores). Performance analysis showed that a cache thrash
1990  // was occurring and this padding helps alleviate the problem.
1991  char padding[64];
1992 #endif
1993 } dispatch_shared_info_t;
1994 
1995 typedef struct kmp_disp {
1996  /* Vector for ORDERED SECTION */
1997  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1998  /* Vector for END ORDERED SECTION */
1999  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2000 
2001  dispatch_shared_info_t *th_dispatch_sh_current;
2002  dispatch_private_info_t *th_dispatch_pr_current;
2003 
2004  dispatch_private_info_t *th_disp_buffer;
2005  kmp_uint32 th_disp_index;
2006  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2007  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2008  kmp_int64 *th_doacross_info; // info on loop bounds
2009 #if KMP_USE_INTERNODE_ALIGNMENT
2010  char more_padding[INTERNODE_CACHE_LINE];
2011 #endif
2012 } kmp_disp_t;
2013 
2014 /* ------------------------------------------------------------------------ */
2015 /* Barrier stuff */
2016 
2017 /* constants for barrier state update */
2018 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2019 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2020 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2021 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2022 
2023 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2024 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2025 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2026 
2027 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2028 #error "Barrier sleep bit must be smaller than barrier bump bit"
2029 #endif
2030 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2031 #error "Barrier unused bit must be smaller than barrier bump bit"
2032 #endif
2033 
2034 // Constants for release barrier wait state: currently, hierarchical only
2035 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2036 #define KMP_BARRIER_OWN_FLAG \
2037  1 // Normal state; worker waiting on own b_go flag in release
2038 #define KMP_BARRIER_PARENT_FLAG \
2039  2 // Special state; worker waiting on parent's b_go flag in release
2040 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2041  3 // Special state; tells worker to shift from parent to own b_go
2042 #define KMP_BARRIER_SWITCHING \
2043  4 // Special state; worker resets appropriate flag on wake-up
2044 
2045 #define KMP_NOT_SAFE_TO_REAP \
2046  0 // Thread th_reap_state: not safe to reap (tasking)
2047 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2048 
2049 // The flag_type describes the storage used for the flag.
2050 enum flag_type {
2051  flag32,
2052  flag64,
2053  atomic_flag64,
2054  flag_oncore,
2055  flag_unset
2056 };
2057 
2058 enum barrier_type {
2059  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2060  barriers if enabled) */
2061  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2062 #if KMP_FAST_REDUCTION_BARRIER
2063  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2064 #endif // KMP_FAST_REDUCTION_BARRIER
2065  bs_last_barrier /* Just a placeholder to mark the end */
2066 };
2067 
2068 // to work with reduction barriers just like with plain barriers
2069 #if !KMP_FAST_REDUCTION_BARRIER
2070 #define bs_reduction_barrier bs_plain_barrier
2071 #endif // KMP_FAST_REDUCTION_BARRIER
2072 
2073 typedef enum kmp_bar_pat { /* Barrier communication patterns */
2074  bp_linear_bar =
2075  0, /* Single level (degenerate) tree */
2076  bp_tree_bar =
2077  1, /* Balanced tree with branching factor 2^n */
2078  bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2079  branching factor 2^n */
2080  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2081  bp_dist_bar = 4, /* Distributed barrier */
2082  bp_last_bar /* Placeholder to mark the end */
2083 } kmp_bar_pat_e;
2084 
2085 #define KMP_BARRIER_ICV_PUSH 1
2086 
2087 /* Record for holding the values of the internal controls stack records */
2088 typedef struct kmp_internal_control {
2089  int serial_nesting_level; /* corresponds to the value of the
2090  th_team_serialized field */
2091  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2092  thread) */
2093  kmp_int8
2094  bt_set; /* internal control for whether blocktime is explicitly set */
2095  int blocktime; /* internal control for blocktime */
2096 #if KMP_USE_MONITOR
2097  int bt_intervals; /* internal control for blocktime intervals */
2098 #endif
2099  int nproc; /* internal control for #threads for next parallel region (per
2100  thread) */
2101  int thread_limit; /* internal control for thread-limit-var */
2102  int max_active_levels; /* internal control for max_active_levels */
2103  kmp_r_sched_t
2104  sched; /* internal control for runtime schedule {sched,chunk} pair */
2105  kmp_proc_bind_t proc_bind; /* internal control for affinity */
2106  kmp_int32 default_device; /* internal control for default device */
2107  struct kmp_internal_control *next;
2108 } kmp_internal_control_t;
2109 
2110 static inline void copy_icvs(kmp_internal_control_t *dst,
2111  kmp_internal_control_t *src) {
2112  *dst = *src;
2113 }
2114 
2115 /* Thread barrier needs volatile barrier fields */
2116 typedef struct KMP_ALIGN_CACHE kmp_bstate {
2117  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2118  // uses of it). It is not explicitly aligned below, because we *don't* want
2119  // it to be padded -- instead, we fit b_go into the same cache line with
2120  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2121  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2122  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2123  // same NGO store
2124  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2125  KMP_ALIGN_CACHE volatile kmp_uint64
2126  b_arrived; // STATE => task reached synch point.
2127  kmp_uint32 *skip_per_level;
2128  kmp_uint32 my_level;
2129  kmp_int32 parent_tid;
2130  kmp_int32 old_tid;
2131  kmp_uint32 depth;
2132  struct kmp_bstate *parent_bar;
2133  kmp_team_t *team;
2134  kmp_uint64 leaf_state;
2135  kmp_uint32 nproc;
2136  kmp_uint8 base_leaf_kids;
2137  kmp_uint8 leaf_kids;
2138  kmp_uint8 offset;
2139  kmp_uint8 wait_flag;
2140  kmp_uint8 use_oncore_barrier;
2141 #if USE_DEBUGGER
2142  // The following field is intended for the debugger solely. Only the worker
2143  // thread itself accesses this field: the worker increases it by 1 when it
2144  // arrives to a barrier.
2145  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2146 #endif /* USE_DEBUGGER */
2147 } kmp_bstate_t;
2148 
2149 union KMP_ALIGN_CACHE kmp_barrier_union {
2150  double b_align; /* use worst case alignment */
2151  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2152  kmp_bstate_t bb;
2153 };
2154 
2155 typedef union kmp_barrier_union kmp_balign_t;
2156 
2157 /* Team barrier needs only non-volatile arrived counter */
2158 union KMP_ALIGN_CACHE kmp_barrier_team_union {
2159  double b_align; /* use worst case alignment */
2160  char b_pad[CACHE_LINE];
2161  struct {
2162  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2163 #if USE_DEBUGGER
2164  // The following two fields are indended for the debugger solely. Only
2165  // primary thread of the team accesses these fields: the first one is
2166  // increased by 1 when the primary thread arrives to a barrier, the second
2167  // one is increased by one when all the threads arrived.
2168  kmp_uint b_master_arrived;
2169  kmp_uint b_team_arrived;
2170 #endif
2171  };
2172 };
2173 
2174 typedef union kmp_barrier_team_union kmp_balign_team_t;
2175 
2176 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2177  threads when a condition changes. This is to workaround an NPTL bug where
2178  padding was added to pthread_cond_t which caused the initialization routine
2179  to write outside of the structure if compiled on pre-NPTL threads. */
2180 #if KMP_OS_WINDOWS
2181 typedef struct kmp_win32_mutex {
2182  /* The Lock */
2183  CRITICAL_SECTION cs;
2184 } kmp_win32_mutex_t;
2185 
2186 typedef struct kmp_win32_cond {
2187  /* Count of the number of waiters. */
2188  int waiters_count_;
2189 
2190  /* Serialize access to <waiters_count_> */
2191  kmp_win32_mutex_t waiters_count_lock_;
2192 
2193  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2194  int release_count_;
2195 
2196  /* Keeps track of the current "generation" so that we don't allow */
2197  /* one thread to steal all the "releases" from the broadcast. */
2198  int wait_generation_count_;
2199 
2200  /* A manual-reset event that's used to block and release waiting threads. */
2201  HANDLE event_;
2202 } kmp_win32_cond_t;
2203 #endif
2204 
2205 #if KMP_OS_UNIX
2206 
2207 union KMP_ALIGN_CACHE kmp_cond_union {
2208  double c_align;
2209  char c_pad[CACHE_LINE];
2210  pthread_cond_t c_cond;
2211 };
2212 
2213 typedef union kmp_cond_union kmp_cond_align_t;
2214 
2215 union KMP_ALIGN_CACHE kmp_mutex_union {
2216  double m_align;
2217  char m_pad[CACHE_LINE];
2218  pthread_mutex_t m_mutex;
2219 };
2220 
2221 typedef union kmp_mutex_union kmp_mutex_align_t;
2222 
2223 #endif /* KMP_OS_UNIX */
2224 
2225 typedef struct kmp_desc_base {
2226  void *ds_stackbase;
2227  size_t ds_stacksize;
2228  int ds_stackgrow;
2229  kmp_thread_t ds_thread;
2230  volatile int ds_tid;
2231  int ds_gtid;
2232 #if KMP_OS_WINDOWS
2233  volatile int ds_alive;
2234  DWORD ds_thread_id;
2235 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2236  However, debugger support (libomp_db) cannot work with handles, because they
2237  uncomparable. For example, debugger requests info about thread with handle h.
2238  h is valid within debugger process, and meaningless within debugee process.
2239  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2240  within debugee process, but it is a *new* handle which does *not* equal to
2241  any other handle in debugee... The only way to compare handles is convert
2242  them to system-wide ids. GetThreadId() function is available only in
2243  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2244  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2245  thread id by call to GetCurrentThreadId() from within the thread and save it
2246  to let libomp_db identify threads. */
2247 #endif /* KMP_OS_WINDOWS */
2248 } kmp_desc_base_t;
2249 
2250 typedef union KMP_ALIGN_CACHE kmp_desc {
2251  double ds_align; /* use worst case alignment */
2252  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2253  kmp_desc_base_t ds;
2254 } kmp_desc_t;
2255 
2256 typedef struct kmp_local {
2257  volatile int this_construct; /* count of single's encountered by thread */
2258  void *reduce_data;
2259 #if KMP_USE_BGET
2260  void *bget_data;
2261  void *bget_list;
2262 #if !USE_CMP_XCHG_FOR_BGET
2263 #ifdef USE_QUEUING_LOCK_FOR_BGET
2264  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2265 #else
2266  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2267 // bootstrap lock so we can use it at library
2268 // shutdown.
2269 #endif /* USE_LOCK_FOR_BGET */
2270 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2271 #endif /* KMP_USE_BGET */
2272 
2273  PACKED_REDUCTION_METHOD_T
2274  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2275  __kmpc_end_reduce*() */
2276 
2277 } kmp_local_t;
2278 
2279 #define KMP_CHECK_UPDATE(a, b) \
2280  if ((a) != (b)) \
2281  (a) = (b)
2282 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2283  if ((a) != (b)) \
2284  TCW_SYNC_PTR((a), (b))
2285 
2286 #define get__blocktime(xteam, xtid) \
2287  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2288 #define get__bt_set(xteam, xtid) \
2289  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2290 #if KMP_USE_MONITOR
2291 #define get__bt_intervals(xteam, xtid) \
2292  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2293 #endif
2294 
2295 #define get__dynamic_2(xteam, xtid) \
2296  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2297 #define get__nproc_2(xteam, xtid) \
2298  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2299 #define get__sched_2(xteam, xtid) \
2300  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2301 
2302 #define set__blocktime_team(xteam, xtid, xval) \
2303  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2304  (xval))
2305 
2306 #if KMP_USE_MONITOR
2307 #define set__bt_intervals_team(xteam, xtid, xval) \
2308  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2309  (xval))
2310 #endif
2311 
2312 #define set__bt_set_team(xteam, xtid, xval) \
2313  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2314 
2315 #define set__dynamic(xthread, xval) \
2316  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2317 #define get__dynamic(xthread) \
2318  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2319 
2320 #define set__nproc(xthread, xval) \
2321  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2322 
2323 #define set__thread_limit(xthread, xval) \
2324  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2325 
2326 #define set__max_active_levels(xthread, xval) \
2327  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2328 
2329 #define get__max_active_levels(xthread) \
2330  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2331 
2332 #define set__sched(xthread, xval) \
2333  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2334 
2335 #define set__proc_bind(xthread, xval) \
2336  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2337 #define get__proc_bind(xthread) \
2338  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2339 
2340 // OpenMP tasking data structures
2341 
2342 typedef enum kmp_tasking_mode {
2343  tskm_immediate_exec = 0,
2344  tskm_extra_barrier = 1,
2345  tskm_task_teams = 2,
2346  tskm_max = 2
2347 } kmp_tasking_mode_t;
2348 
2349 extern kmp_tasking_mode_t
2350  __kmp_tasking_mode; /* determines how/when to execute tasks */
2351 extern int __kmp_task_stealing_constraint;
2352 extern int __kmp_enable_task_throttling;
2353 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2354 // specified, defaults to 0 otherwise
2355 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2356 extern kmp_int32 __kmp_max_task_priority;
2357 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2358 extern kmp_uint64 __kmp_taskloop_min_tasks;
2359 
2360 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2361  taskdata first */
2362 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2363 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2364 
2365 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2366 // were spawned and queued since the previous barrier release.
2367 #define KMP_TASKING_ENABLED(task_team) \
2368  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2369 
2376 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2377 
2378 typedef union kmp_cmplrdata {
2379  kmp_int32 priority;
2380  kmp_routine_entry_t
2381  destructors; /* pointer to function to invoke deconstructors of
2382  firstprivate C++ objects */
2383  /* future data */
2384 } kmp_cmplrdata_t;
2385 
2386 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2389 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2390  void *shareds;
2391  kmp_routine_entry_t
2392  routine;
2393  kmp_int32 part_id;
2394  kmp_cmplrdata_t
2395  data1; /* Two known optional additions: destructors and priority */
2396  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2397  /* future data */
2398  /* private vars */
2399 } kmp_task_t;
2400 
2405 typedef struct kmp_taskgroup {
2406  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2407  std::atomic<kmp_int32>
2408  cancel_request; // request for cancellation of this taskgroup
2409  struct kmp_taskgroup *parent; // parent taskgroup
2410  // Block of data to perform task reduction
2411  void *reduce_data; // reduction related info
2412  kmp_int32 reduce_num_data; // number of data items to reduce
2413  uintptr_t *gomp_data; // gomp reduction data
2414 } kmp_taskgroup_t;
2415 
2416 // forward declarations
2417 typedef union kmp_depnode kmp_depnode_t;
2418 typedef struct kmp_depnode_list kmp_depnode_list_t;
2419 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2420 
2421 // macros for checking dep flag as an integer
2422 #define KMP_DEP_IN 0x1
2423 #define KMP_DEP_OUT 0x2
2424 #define KMP_DEP_INOUT 0x3
2425 #define KMP_DEP_MTX 0x4
2426 #define KMP_DEP_SET 0x8
2427 #define KMP_DEP_ALL 0x80
2428 // Compiler sends us this info:
2429 typedef struct kmp_depend_info {
2430  kmp_intptr_t base_addr;
2431  size_t len;
2432  union {
2433  kmp_uint8 flag; // flag as an unsigned char
2434  struct { // flag as a set of 8 bits
2435  unsigned in : 1;
2436  unsigned out : 1;
2437  unsigned mtx : 1;
2438  unsigned set : 1;
2439  unsigned unused : 3;
2440  unsigned all : 1;
2441  } flags;
2442  };
2443 } kmp_depend_info_t;
2444 
2445 // Internal structures to work with task dependencies:
2446 struct kmp_depnode_list {
2447  kmp_depnode_t *node;
2448  kmp_depnode_list_t *next;
2449 };
2450 
2451 // Max number of mutexinoutset dependencies per node
2452 #define MAX_MTX_DEPS 4
2453 
2454 typedef struct kmp_base_depnode {
2455  kmp_depnode_list_t *successors; /* used under lock */
2456  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2457  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2458  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2459  kmp_lock_t lock; /* guards shared fields: task, successors */
2460 #if KMP_SUPPORT_GRAPH_OUTPUT
2461  kmp_uint32 id;
2462 #endif
2463  std::atomic<kmp_int32> npredecessors;
2464  std::atomic<kmp_int32> nrefs;
2465 } kmp_base_depnode_t;
2466 
2467 union KMP_ALIGN_CACHE kmp_depnode {
2468  double dn_align; /* use worst case alignment */
2469  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2470  kmp_base_depnode_t dn;
2471 };
2472 
2473 struct kmp_dephash_entry {
2474  kmp_intptr_t addr;
2475  kmp_depnode_t *last_out;
2476  kmp_depnode_list_t *last_set;
2477  kmp_depnode_list_t *prev_set;
2478  kmp_uint8 last_flag;
2479  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2480  kmp_dephash_entry_t *next_in_bucket;
2481 };
2482 
2483 typedef struct kmp_dephash {
2484  kmp_dephash_entry_t **buckets;
2485  size_t size;
2486  kmp_depnode_t *last_all;
2487  size_t generation;
2488  kmp_uint32 nelements;
2489  kmp_uint32 nconflicts;
2490 } kmp_dephash_t;
2491 
2492 typedef struct kmp_task_affinity_info {
2493  kmp_intptr_t base_addr;
2494  size_t len;
2495  struct {
2496  bool flag1 : 1;
2497  bool flag2 : 1;
2498  kmp_int32 reserved : 30;
2499  } flags;
2500 } kmp_task_affinity_info_t;
2501 
2502 typedef enum kmp_event_type_t {
2503  KMP_EVENT_UNINITIALIZED = 0,
2504  KMP_EVENT_ALLOW_COMPLETION = 1
2505 } kmp_event_type_t;
2506 
2507 typedef struct {
2508  kmp_event_type_t type;
2509  kmp_tas_lock_t lock;
2510  union {
2511  kmp_task_t *task;
2512  } ed;
2513 } kmp_event_t;
2514 
2515 #if OMPX_TASKGRAPH
2516 // Initial number of allocated nodes while recording
2517 #define INIT_MAPSIZE 50
2518 
2519 typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2520  unsigned nowait : 1;
2521  unsigned re_record : 1;
2522  unsigned reserved : 30;
2523 } kmp_taskgraph_flags_t;
2524 
2526 typedef struct kmp_node_info {
2527  kmp_task_t *task; // Pointer to the actual task
2528  kmp_int32 *successors; // Array of the succesors ids
2529  kmp_int32 nsuccessors; // Number of succesors of the node
2530  std::atomic<kmp_int32>
2531  npredecessors_counter; // Number of predessors on the fly
2532  kmp_int32 npredecessors; // Total number of predecessors
2533  kmp_int32 successors_size; // Number of allocated succesors ids
2534  kmp_taskdata_t *parent_task; // Parent implicit task
2535 } kmp_node_info_t;
2536 
2538 typedef enum kmp_tdg_status {
2539  KMP_TDG_NONE = 0,
2540  KMP_TDG_RECORDING = 1,
2541  KMP_TDG_READY = 2
2542 } kmp_tdg_status_t;
2543 
2545 typedef struct kmp_tdg_info {
2546  kmp_int32 tdg_id; // Unique idenfifier of the TDG
2547  kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2548  kmp_int32 map_size; // Number of allocated TDG nodes
2549  kmp_int32 num_roots; // Number of roots tasks int the TDG
2550  kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2551  kmp_node_info_t *record_map; // Array of TDG nodes
2552  kmp_tdg_status_t tdg_status =
2553  KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2554  std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2555  kmp_bootstrap_lock_t
2556  graph_lock; // Protect graph attributes when updated via taskloop_recur
2557  // Taskloop reduction related
2558  void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2559  // __kmpc_taskred_init
2560  kmp_int32 rec_num_taskred;
2561 } kmp_tdg_info_t;
2562 
2563 extern int __kmp_tdg_dot;
2564 extern kmp_int32 __kmp_max_tdgs;
2565 extern kmp_tdg_info_t **__kmp_global_tdgs;
2566 extern kmp_int32 __kmp_curr_tdg_idx;
2567 extern kmp_int32 __kmp_successors_size;
2568 extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2569 extern kmp_int32 __kmp_num_tdg;
2570 #endif
2571 
2572 #ifdef BUILD_TIED_TASK_STACK
2573 
2574 /* Tied Task stack definitions */
2575 typedef struct kmp_stack_block {
2576  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2577  struct kmp_stack_block *sb_next;
2578  struct kmp_stack_block *sb_prev;
2579 } kmp_stack_block_t;
2580 
2581 typedef struct kmp_task_stack {
2582  kmp_stack_block_t ts_first_block; // first block of stack entries
2583  kmp_taskdata_t **ts_top; // pointer to the top of stack
2584  kmp_int32 ts_entries; // number of entries on the stack
2585 } kmp_task_stack_t;
2586 
2587 #endif // BUILD_TIED_TASK_STACK
2588 
2589 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2590  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2591  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2592  unsigned final : 1; /* task is final(1) so execute immediately */
2593  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2594  code path */
2595  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2596  invoke destructors from the runtime */
2597  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2598  context of the RTL) */
2599  unsigned priority_specified : 1; /* set if the compiler provides priority
2600  setting for the task */
2601  unsigned detachable : 1; /* 1 == can detach */
2602  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2603  unsigned reserved : 8; /* reserved for compiler use */
2604 
2605  /* Library flags */ /* Total library flags must be 16 bits */
2606  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2607  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2608  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2609  // (1) or may be deferred (0)
2610  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2611  // (0) [>= 2 threads]
2612  /* If either team_serial or tasking_ser is set, task team may be NULL */
2613  /* Task State Flags: */
2614  unsigned started : 1; /* 1==started, 0==not started */
2615  unsigned executing : 1; /* 1==executing, 0==not executing */
2616  unsigned complete : 1; /* 1==complete, 0==not complete */
2617  unsigned freed : 1; /* 1==freed, 0==allocated */
2618  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2619 #if OMPX_TASKGRAPH
2620  unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2621  unsigned reserved31 : 6; /* reserved for library use */
2622 #else
2623  unsigned reserved31 : 7; /* reserved for library use */
2624 #endif
2625 
2626 } kmp_tasking_flags_t;
2627 
2628 typedef struct kmp_target_data {
2629  void *async_handle; // libomptarget async handle for task completion query
2630 } kmp_target_data_t;
2631 
2632 struct kmp_taskdata { /* aligned during dynamic allocation */
2633  kmp_int32 td_task_id; /* id, assigned by debugger */
2634  kmp_tasking_flags_t td_flags; /* task flags */
2635  kmp_team_t *td_team; /* team for this task */
2636  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2637  /* Currently not used except for perhaps IDB */
2638  kmp_taskdata_t *td_parent; /* parent task */
2639  kmp_int32 td_level; /* task nesting level */
2640  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2641  ident_t *td_ident; /* task identifier */
2642  // Taskwait data.
2643  ident_t *td_taskwait_ident;
2644  kmp_uint32 td_taskwait_counter;
2645  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2646  KMP_ALIGN_CACHE kmp_internal_control_t
2647  td_icvs; /* Internal control variables for the task */
2648  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2649  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2650  deallocated */
2651  std::atomic<kmp_int32>
2652  td_incomplete_child_tasks; /* Child tasks not yet complete */
2653  kmp_taskgroup_t
2654  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2655  kmp_dephash_t
2656  *td_dephash; // Dependencies for children tasks are tracked from here
2657  kmp_depnode_t
2658  *td_depnode; // Pointer to graph node if this task has dependencies
2659  kmp_task_team_t *td_task_team;
2660  size_t td_size_alloc; // Size of task structure, including shareds etc.
2661 #if defined(KMP_GOMP_COMPAT)
2662  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2663  kmp_int32 td_size_loop_bounds;
2664 #endif
2665  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2666 #if defined(KMP_GOMP_COMPAT)
2667  // GOMP sends in a copy function for copy constructors
2668  void (*td_copy_func)(void *, void *);
2669 #endif
2670  kmp_event_t td_allow_completion_event;
2671 #if OMPT_SUPPORT
2672  ompt_task_info_t ompt_task_info;
2673 #endif
2674 #if OMPX_TASKGRAPH
2675  bool is_taskgraph = 0; // whether the task is within a TDG
2676  kmp_tdg_info_t *tdg; // used to associate task with a TDG
2677 #endif
2678  kmp_target_data_t td_target_data;
2679 }; // struct kmp_taskdata
2680 
2681 // Make sure padding above worked
2682 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2683 
2684 // Data for task team but per thread
2685 typedef struct kmp_base_thread_data {
2686  kmp_info_p *td_thr; // Pointer back to thread info
2687  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2688  // queued?
2689  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2690  kmp_taskdata_t *
2691  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2692  kmp_int32 td_deque_size; // Size of deck
2693  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2694  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2695  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2696  // GEH: shouldn't this be volatile since used in while-spin?
2697  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2698 #ifdef BUILD_TIED_TASK_STACK
2699  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2700 // scheduling constraint
2701 #endif // BUILD_TIED_TASK_STACK
2702 } kmp_base_thread_data_t;
2703 
2704 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2705 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2706 
2707 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2708 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2709 
2710 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2711  kmp_base_thread_data_t td;
2712  double td_align; /* use worst case alignment */
2713  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2714 } kmp_thread_data_t;
2715 
2716 typedef struct kmp_task_pri {
2717  kmp_thread_data_t td;
2718  kmp_int32 priority;
2719  kmp_task_pri *next;
2720 } kmp_task_pri_t;
2721 
2722 // Data for task teams which are used when tasking is enabled for the team
2723 typedef struct kmp_base_task_team {
2724  kmp_bootstrap_lock_t
2725  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2726  /* must be bootstrap lock since used at library shutdown*/
2727 
2728  // TODO: check performance vs kmp_tas_lock_t
2729  kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2730  kmp_task_pri_t *tt_task_pri_list;
2731 
2732  kmp_task_team_t *tt_next; /* For linking the task team free list */
2733  kmp_thread_data_t
2734  *tt_threads_data; /* Array of per-thread structures for task team */
2735  /* Data survives task team deallocation */
2736  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2737  executing this team? */
2738  /* TRUE means tt_threads_data is set up and initialized */
2739  kmp_int32 tt_nproc; /* #threads in team */
2740  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2741  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2742  kmp_int32 tt_untied_task_encountered;
2743  std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2744  // There is hidden helper thread encountered in this task team so that we must
2745  // wait when waiting on task team
2746  kmp_int32 tt_hidden_helper_task_encountered;
2747 
2748  KMP_ALIGN_CACHE
2749  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2750 
2751  KMP_ALIGN_CACHE
2752  volatile kmp_uint32
2753  tt_active; /* is the team still actively executing tasks */
2754 } kmp_base_task_team_t;
2755 
2756 union KMP_ALIGN_CACHE kmp_task_team {
2757  kmp_base_task_team_t tt;
2758  double tt_align; /* use worst case alignment */
2759  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2760 };
2761 
2762 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2763 // Free lists keep same-size free memory slots for fast memory allocation
2764 // routines
2765 typedef struct kmp_free_list {
2766  void *th_free_list_self; // Self-allocated tasks free list
2767  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2768  // threads
2769  void *th_free_list_other; // Non-self free list (to be returned to owner's
2770  // sync list)
2771 } kmp_free_list_t;
2772 #endif
2773 #if KMP_NESTED_HOT_TEAMS
2774 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2775 // are not put in teams pool, and they don't put threads in threads pool.
2776 typedef struct kmp_hot_team_ptr {
2777  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2778  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2779 } kmp_hot_team_ptr_t;
2780 #endif
2781 typedef struct kmp_teams_size {
2782  kmp_int32 nteams; // number of teams in a league
2783  kmp_int32 nth; // number of threads in each team of the league
2784 } kmp_teams_size_t;
2785 
2786 // This struct stores a thread that acts as a "root" for a contention
2787 // group. Contention groups are rooted at kmp_root threads, but also at
2788 // each primary thread of each team created in the teams construct.
2789 // This struct therefore also stores a thread_limit associated with
2790 // that contention group, and a counter to track the number of threads
2791 // active in that contention group. Each thread has a list of these: CG
2792 // root threads have an entry in their list in which cg_root refers to
2793 // the thread itself, whereas other workers in the CG will have a
2794 // single entry where cg_root is same as the entry containing their CG
2795 // root. When a thread encounters a teams construct, it will add a new
2796 // entry to the front of its list, because it now roots a new CG.
2797 typedef struct kmp_cg_root {
2798  kmp_info_p *cg_root; // "root" thread for a contention group
2799  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2800  // thread_limit clause for teams primary threads
2801  kmp_int32 cg_thread_limit;
2802  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2803  struct kmp_cg_root *up; // pointer to higher level CG root in list
2804 } kmp_cg_root_t;
2805 
2806 // OpenMP thread data structures
2807 
2808 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2809  /* Start with the readonly data which is cache aligned and padded. This is
2810  written before the thread starts working by the primary thread. Uber
2811  masters may update themselves later. Usage does not consider serialized
2812  regions. */
2813  kmp_desc_t th_info;
2814  kmp_team_p *th_team; /* team we belong to */
2815  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2816  kmp_info_p *th_next_pool; /* next available thread in the pool */
2817  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2818  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2819 
2820  /* The following are cached from the team info structure */
2821  /* TODO use these in more places as determined to be needed via profiling */
2822  int th_team_nproc; /* number of threads in a team */
2823  kmp_info_p *th_team_master; /* the team's primary thread */
2824  int th_team_serialized; /* team is serialized */
2825  microtask_t th_teams_microtask; /* save entry address for teams construct */
2826  int th_teams_level; /* save initial level of teams construct */
2827 /* it is 0 on device but may be any on host */
2828 
2829 /* The blocktime info is copied from the team struct to the thread struct */
2830 /* at the start of a barrier, and the values stored in the team are used */
2831 /* at points in the code where the team struct is no longer guaranteed */
2832 /* to exist (from the POV of worker threads). */
2833 #if KMP_USE_MONITOR
2834  int th_team_bt_intervals;
2835  int th_team_bt_set;
2836 #else
2837  kmp_uint64 th_team_bt_intervals;
2838 #endif
2839 
2840 #if KMP_AFFINITY_SUPPORTED
2841  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2842  kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2843  kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2844 #endif
2845  omp_allocator_handle_t th_def_allocator; /* default allocator */
2846  /* The data set by the primary thread at reinit, then R/W by the worker */
2847  KMP_ALIGN_CACHE int
2848  th_set_nproc; /* if > 0, then only use this request for the next fork */
2849 #if KMP_NESTED_HOT_TEAMS
2850  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2851 #endif
2852  kmp_proc_bind_t
2853  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2854  kmp_teams_size_t
2855  th_teams_size; /* number of teams/threads in teams construct */
2856 #if KMP_AFFINITY_SUPPORTED
2857  int th_current_place; /* place currently bound to */
2858  int th_new_place; /* place to bind to in par reg */
2859  int th_first_place; /* first place in partition */
2860  int th_last_place; /* last place in partition */
2861 #endif
2862  int th_prev_level; /* previous level for affinity format */
2863  int th_prev_num_threads; /* previous num_threads for affinity format */
2864 #if USE_ITT_BUILD
2865  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2866  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2867  kmp_uint64 th_frame_time; /* frame timestamp */
2868 #endif /* USE_ITT_BUILD */
2869  kmp_local_t th_local;
2870  struct private_common *th_pri_head;
2871 
2872  /* Now the data only used by the worker (after initial allocation) */
2873  /* TODO the first serial team should actually be stored in the info_t
2874  structure. this will help reduce initial allocation overhead */
2875  KMP_ALIGN_CACHE kmp_team_p
2876  *th_serial_team; /*serialized team held in reserve*/
2877 
2878 #if OMPT_SUPPORT
2879  ompt_thread_info_t ompt_thread_info;
2880 #endif
2881 
2882  /* The following are also read by the primary thread during reinit */
2883  struct common_table *th_pri_common;
2884 
2885  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2886  /* while awaiting queuing lock acquire */
2887 
2888  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2889  flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2890 
2891  ident_t *th_ident;
2892  unsigned th_x; // Random number generator data
2893  unsigned th_a; // Random number generator data
2894 
2895  /* Tasking-related data for the thread */
2896  kmp_task_team_t *th_task_team; // Task team struct
2897  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2898  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2899  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2900  // at nested levels
2901  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2902  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2903  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2904  // tasking, thus safe to reap
2905 
2906  /* More stuff for keeping track of active/sleeping threads (this part is
2907  written by the worker thread) */
2908  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2909  int th_active; // ! sleeping; 32 bits for TCR/TCW
2910  std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2911  // 0 = not used in team; 1 = used in team;
2912  // 2 = transitioning to not used in team; 3 = transitioning to used in team
2913  struct cons_header *th_cons; // used for consistency check
2914 #if KMP_USE_HIER_SCHED
2915  // used for hierarchical scheduling
2916  kmp_hier_private_bdata_t *th_hier_bar_data;
2917 #endif
2918 
2919  /* Add the syncronizing data which is cache aligned and padded. */
2920  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2921 
2922  KMP_ALIGN_CACHE volatile kmp_int32
2923  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2924 
2925 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2926 #define NUM_LISTS 4
2927  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2928 // allocation routines
2929 #endif
2930 
2931 #if KMP_OS_WINDOWS
2932  kmp_win32_cond_t th_suspend_cv;
2933  kmp_win32_mutex_t th_suspend_mx;
2934  std::atomic<int> th_suspend_init;
2935 #endif
2936 #if KMP_OS_UNIX
2937  kmp_cond_align_t th_suspend_cv;
2938  kmp_mutex_align_t th_suspend_mx;
2939  std::atomic<int> th_suspend_init_count;
2940 #endif
2941 
2942 #if USE_ITT_BUILD
2943  kmp_itt_mark_t th_itt_mark_single;
2944 // alignment ???
2945 #endif /* USE_ITT_BUILD */
2946 #if KMP_STATS_ENABLED
2947  kmp_stats_list *th_stats;
2948 #endif
2949 #if KMP_OS_UNIX
2950  std::atomic<bool> th_blocking;
2951 #endif
2952  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2953 } kmp_base_info_t;
2954 
2955 typedef union KMP_ALIGN_CACHE kmp_info {
2956  double th_align; /* use worst case alignment */
2957  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2958  kmp_base_info_t th;
2959 } kmp_info_t;
2960 
2961 // OpenMP thread team data structures
2962 
2963 typedef struct kmp_base_data {
2964  volatile kmp_uint32 t_value;
2965 } kmp_base_data_t;
2966 
2967 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2968  double dt_align; /* use worst case alignment */
2969  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2970  kmp_base_data_t dt;
2971 } kmp_sleep_team_t;
2972 
2973 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2974  double dt_align; /* use worst case alignment */
2975  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2976  kmp_base_data_t dt;
2977 } kmp_ordered_team_t;
2978 
2979 typedef int (*launch_t)(int gtid);
2980 
2981 /* Minimum number of ARGV entries to malloc if necessary */
2982 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2983 
2984 // Set up how many argv pointers will fit in cache lines containing
2985 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2986 // larger value for more space between the primary write/worker read section and
2987 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2988 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2989 #define KMP_INLINE_ARGV_BYTES \
2990  (4 * CACHE_LINE - \
2991  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2992  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2993  CACHE_LINE))
2994 #else
2995 #define KMP_INLINE_ARGV_BYTES \
2996  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2997 #endif
2998 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2999 
3000 typedef struct KMP_ALIGN_CACHE kmp_base_team {
3001  // Synchronization Data
3002  // ---------------------------------------------------------------------------
3003  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3004  kmp_balign_team_t t_bar[bs_last_barrier];
3005  std::atomic<int> t_construct; // count of single directive encountered by team
3006  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3007 
3008  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3009  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3010  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3011 
3012  // Primary thread only
3013  // ---------------------------------------------------------------------------
3014  KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3015  int t_master_this_cons; // "this_construct" single counter of primary thread
3016  // in parent team
3017  ident_t *t_ident; // if volatile, have to change too much other crud to
3018  // volatile too
3019  kmp_team_p *t_parent; // parent team
3020  kmp_team_p *t_next_pool; // next free team in the team pool
3021  kmp_disp_t *t_dispatch; // thread's dispatch data
3022  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3023  kmp_proc_bind_t t_proc_bind; // bind type for par region
3024 #if USE_ITT_BUILD
3025  kmp_uint64 t_region_time; // region begin timestamp
3026 #endif /* USE_ITT_BUILD */
3027 
3028  // Primary thread write, workers read
3029  // --------------------------------------------------------------------------
3030  KMP_ALIGN_CACHE void **t_argv;
3031  int t_argc;
3032  int t_nproc; // number of threads in team
3033  microtask_t t_pkfn;
3034  launch_t t_invoke; // procedure to launch the microtask
3035 
3036 #if OMPT_SUPPORT
3037  ompt_team_info_t ompt_team_info;
3038  ompt_lw_taskteam_t *ompt_serialized_team_info;
3039 #endif
3040 
3041 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3042  kmp_int8 t_fp_control_saved;
3043  kmp_int8 t_pad2b;
3044  kmp_int16 t_x87_fpu_control_word; // FP control regs
3045  kmp_uint32 t_mxcsr;
3046 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3047 
3048  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3049 
3050  KMP_ALIGN_CACHE kmp_info_t **t_threads;
3051  kmp_taskdata_t
3052  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3053  int t_level; // nested parallel level
3054 
3055  KMP_ALIGN_CACHE int t_max_argc;
3056  int t_max_nproc; // max threads this team can handle (dynamically expandable)
3057  int t_serialized; // levels deep of serialized teams
3058  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3059  int t_id; // team's id, assigned by debugger.
3060  int t_active_level; // nested active parallel level
3061  kmp_r_sched_t t_sched; // run-time schedule for the team
3062 #if KMP_AFFINITY_SUPPORTED
3063  int t_first_place; // first & last place in parent thread's partition.
3064  int t_last_place; // Restore these values to primary thread after par region.
3065 #endif // KMP_AFFINITY_SUPPORTED
3066  int t_display_affinity;
3067  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3068  // omp_set_num_threads() call
3069  omp_allocator_handle_t t_def_allocator; /* default allocator */
3070 
3071 // Read/write by workers as well
3072 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3073  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3074  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3075  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3076  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3077  char dummy_padding[1024];
3078 #endif
3079  // Internal control stack for additional nested teams.
3080  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3081  // for SERIALIZED teams nested 2 or more levels deep
3082  // typed flag to store request state of cancellation
3083  std::atomic<kmp_int32> t_cancel_request;
3084  int t_master_active; // save on fork, restore on join
3085  void *t_copypriv_data; // team specific pointer to copyprivate data array
3086 #if KMP_OS_WINDOWS
3087  std::atomic<kmp_uint32> t_copyin_counter;
3088 #endif
3089 #if USE_ITT_BUILD
3090  void *t_stack_id; // team specific stack stitching id (for ittnotify)
3091 #endif /* USE_ITT_BUILD */
3092  distributedBarrier *b; // Distributed barrier data associated with team
3093 } kmp_base_team_t;
3094 
3095 union KMP_ALIGN_CACHE kmp_team {
3096  kmp_base_team_t t;
3097  double t_align; /* use worst case alignment */
3098  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3099 };
3100 
3101 typedef union KMP_ALIGN_CACHE kmp_time_global {
3102  double dt_align; /* use worst case alignment */
3103  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3104  kmp_base_data_t dt;
3105 } kmp_time_global_t;
3106 
3107 typedef struct kmp_base_global {
3108  /* cache-aligned */
3109  kmp_time_global_t g_time;
3110 
3111  /* non cache-aligned */
3112  volatile int g_abort;
3113  volatile int g_done;
3114 
3115  int g_dynamic;
3116  enum dynamic_mode g_dynamic_mode;
3117 } kmp_base_global_t;
3118 
3119 typedef union KMP_ALIGN_CACHE kmp_global {
3120  kmp_base_global_t g;
3121  double g_align; /* use worst case alignment */
3122  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3123 } kmp_global_t;
3124 
3125 typedef struct kmp_base_root {
3126  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3127  // (r_in_parallel>= 0)
3128  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3129  // the synch overhead or keeping r_active
3130  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3131  // keeps a count of active parallel regions per root
3132  std::atomic<int> r_in_parallel;
3133  // GEH: This is misnamed, should be r_active_levels
3134  kmp_team_t *r_root_team;
3135  kmp_team_t *r_hot_team;
3136  kmp_info_t *r_uber_thread;
3137  kmp_lock_t r_begin_lock;
3138  volatile int r_begin;
3139  int r_blocktime; /* blocktime for this root and descendants */
3140 #if KMP_AFFINITY_SUPPORTED
3141  int r_affinity_assigned;
3142 #endif // KMP_AFFINITY_SUPPORTED
3143 } kmp_base_root_t;
3144 
3145 typedef union KMP_ALIGN_CACHE kmp_root {
3146  kmp_base_root_t r;
3147  double r_align; /* use worst case alignment */
3148  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3149 } kmp_root_t;
3150 
3151 struct fortran_inx_info {
3152  kmp_int32 data;
3153 };
3154 
3155 // This list type exists to hold old __kmp_threads arrays so that
3156 // old references to them may complete while reallocation takes place when
3157 // expanding the array. The items in this list are kept alive until library
3158 // shutdown.
3159 typedef struct kmp_old_threads_list_t {
3160  kmp_info_t **threads;
3161  struct kmp_old_threads_list_t *next;
3162 } kmp_old_threads_list_t;
3163 
3164 /* ------------------------------------------------------------------------ */
3165 
3166 extern int __kmp_settings;
3167 extern int __kmp_duplicate_library_ok;
3168 #if USE_ITT_BUILD
3169 extern int __kmp_forkjoin_frames;
3170 extern int __kmp_forkjoin_frames_mode;
3171 #endif
3172 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3173 extern int __kmp_determ_red;
3174 
3175 #ifdef KMP_DEBUG
3176 extern int kmp_a_debug;
3177 extern int kmp_b_debug;
3178 extern int kmp_c_debug;
3179 extern int kmp_d_debug;
3180 extern int kmp_e_debug;
3181 extern int kmp_f_debug;
3182 #endif /* KMP_DEBUG */
3183 
3184 /* For debug information logging using rotating buffer */
3185 #define KMP_DEBUG_BUF_LINES_INIT 512
3186 #define KMP_DEBUG_BUF_LINES_MIN 1
3187 
3188 #define KMP_DEBUG_BUF_CHARS_INIT 128
3189 #define KMP_DEBUG_BUF_CHARS_MIN 2
3190 
3191 extern int
3192  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3193 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3194 extern int
3195  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3196 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3197  entry pointer */
3198 
3199 extern char *__kmp_debug_buffer; /* Debug buffer itself */
3200 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3201  printed in buffer so far */
3202 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3203  recommended in warnings */
3204 /* end rotating debug buffer */
3205 
3206 #ifdef KMP_DEBUG
3207 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3208 
3209 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
3210 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3211 #define KMP_PAR_RANGE_FILENAME_LEN 1024
3212 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3213 extern int __kmp_par_range_lb;
3214 extern int __kmp_par_range_ub;
3215 #endif
3216 
3217 /* For printing out dynamic storage map for threads and teams */
3218 extern int
3219  __kmp_storage_map; /* True means print storage map for threads and teams */
3220 extern int __kmp_storage_map_verbose; /* True means storage map includes
3221  placement info */
3222 extern int __kmp_storage_map_verbose_specified;
3223 
3224 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3225 extern kmp_cpuinfo_t __kmp_cpuinfo;
3226 static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3227 #elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3228 static inline bool __kmp_is_hybrid_cpu() { return true; }
3229 #else
3230 static inline bool __kmp_is_hybrid_cpu() { return false; }
3231 #endif
3232 
3233 extern volatile int __kmp_init_serial;
3234 extern volatile int __kmp_init_gtid;
3235 extern volatile int __kmp_init_common;
3236 extern volatile int __kmp_need_register_serial;
3237 extern volatile int __kmp_init_middle;
3238 extern volatile int __kmp_init_parallel;
3239 #if KMP_USE_MONITOR
3240 extern volatile int __kmp_init_monitor;
3241 #endif
3242 extern volatile int __kmp_init_user_locks;
3243 extern volatile int __kmp_init_hidden_helper_threads;
3244 extern int __kmp_init_counter;
3245 extern int __kmp_root_counter;
3246 extern int __kmp_version;
3247 
3248 /* list of address of allocated caches for commons */
3249 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3250 
3251 /* Barrier algorithm types and options */
3252 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3253 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3254 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3255 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3256 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3257 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3258 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3259 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3260 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3261 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3262 extern char const *__kmp_barrier_type_name[bs_last_barrier];
3263 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3264 
3265 /* Global Locks */
3266 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3267 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3268 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3269 extern kmp_bootstrap_lock_t
3270  __kmp_exit_lock; /* exit() is not always thread-safe */
3271 #if KMP_USE_MONITOR
3272 extern kmp_bootstrap_lock_t
3273  __kmp_monitor_lock; /* control monitor thread creation */
3274 #endif
3275 extern kmp_bootstrap_lock_t
3276  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3277  __kmp_threads expansion to co-exist */
3278 
3279 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3280 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3281 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3282 
3283 extern enum library_type __kmp_library;
3284 
3285 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3286 extern enum sched_type __kmp_static; /* default static scheduling method */
3287 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3288 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3289 extern int __kmp_chunk; /* default runtime chunk size */
3290 extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3291 
3292 extern size_t __kmp_stksize; /* stack size per thread */
3293 #if KMP_USE_MONITOR
3294 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3295 #endif
3296 extern size_t __kmp_stkoffset; /* stack offset per thread */
3297 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3298 
3299 extern size_t
3300  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3301 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3302 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3303 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3304 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3305 extern int __kmp_generate_warnings; /* should we issue warnings? */
3306 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3307 
3308 #ifdef DEBUG_SUSPEND
3309 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3310 #endif
3311 
3312 extern kmp_int32 __kmp_use_yield;
3313 extern kmp_int32 __kmp_use_yield_exp_set;
3314 extern kmp_uint32 __kmp_yield_init;
3315 extern kmp_uint32 __kmp_yield_next;
3316 extern kmp_uint64 __kmp_pause_init;
3317 
3318 /* ------------------------------------------------------------------------- */
3319 extern int __kmp_allThreadsSpecified;
3320 
3321 extern size_t __kmp_align_alloc;
3322 /* following data protected by initialization routines */
3323 extern int __kmp_xproc; /* number of processors in the system */
3324 extern int __kmp_avail_proc; /* number of processors available to the process */
3325 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3326 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3327 // maximum total number of concurrently-existing threads on device
3328 extern int __kmp_max_nth;
3329 // maximum total number of concurrently-existing threads in a contention group
3330 extern int __kmp_cg_max_nth;
3331 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3332 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3333  __kmp_root */
3334 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3335  region a la OMP_NUM_THREADS */
3336 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3337  initialization */
3338 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3339  used (fixed) */
3340 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3341  (__kmpc_threadprivate_cached()) */
3342 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3343  blocking (env setting) */
3344 extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3345 #if KMP_USE_MONITOR
3346 extern int
3347  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3348 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3349  blocking */
3350 #endif
3351 #ifdef KMP_ADJUST_BLOCKTIME
3352 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3353 #endif /* KMP_ADJUST_BLOCKTIME */
3354 #ifdef KMP_DFLT_NTH_CORES
3355 extern int __kmp_ncores; /* Total number of cores for threads placement */
3356 #endif
3357 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3358 extern int __kmp_abort_delay;
3359 
3360 extern int __kmp_need_register_atfork_specified;
3361 extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3362  to install fork handler */
3363 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3364  0 - not set, will be set at runtime
3365  1 - using stack search
3366  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3367  X*) or TlsGetValue(Windows* OS))
3368  3 - static TLS (__declspec(thread) __kmp_gtid),
3369  Linux* OS .so only. */
3370 extern int
3371  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3372 #ifdef KMP_TDATA_GTID
3373 extern KMP_THREAD_LOCAL int __kmp_gtid;
3374 #endif
3375 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3376 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3377 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3378 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3379 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3380 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3381 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3382 
3383 // max_active_levels for nested parallelism enabled by default via
3384 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3385 extern int __kmp_dflt_max_active_levels;
3386 // Indicates whether value of __kmp_dflt_max_active_levels was already
3387 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3388 extern bool __kmp_dflt_max_active_levels_set;
3389 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3390  concurrent execution per team */
3391 #if KMP_NESTED_HOT_TEAMS
3392 extern int __kmp_hot_teams_mode;
3393 extern int __kmp_hot_teams_max_level;
3394 #endif
3395 
3396 #if KMP_OS_LINUX
3397 extern enum clock_function_type __kmp_clock_function;
3398 extern int __kmp_clock_function_param;
3399 #endif /* KMP_OS_LINUX */
3400 
3401 #if KMP_MIC_SUPPORTED
3402 extern enum mic_type __kmp_mic_type;
3403 #endif
3404 
3405 #ifdef USE_LOAD_BALANCE
3406 extern double __kmp_load_balance_interval; // load balance algorithm interval
3407 #endif /* USE_LOAD_BALANCE */
3408 
3409 // OpenMP 3.1 - Nested num threads array
3410 typedef struct kmp_nested_nthreads_t {
3411  int *nth;
3412  int size;
3413  int used;
3414 } kmp_nested_nthreads_t;
3415 
3416 extern kmp_nested_nthreads_t __kmp_nested_nth;
3417 
3418 #if KMP_USE_ADAPTIVE_LOCKS
3419 
3420 // Parameters for the speculative lock backoff system.
3421 struct kmp_adaptive_backoff_params_t {
3422  // Number of soft retries before it counts as a hard retry.
3423  kmp_uint32 max_soft_retries;
3424  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3425  // the right
3426  kmp_uint32 max_badness;
3427 };
3428 
3429 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3430 
3431 #if KMP_DEBUG_ADAPTIVE_LOCKS
3432 extern const char *__kmp_speculative_statsfile;
3433 #endif
3434 
3435 #endif // KMP_USE_ADAPTIVE_LOCKS
3436 
3437 extern int __kmp_display_env; /* TRUE or FALSE */
3438 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3439 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3440 extern int __kmp_nteams;
3441 extern int __kmp_teams_thread_limit;
3442 
3443 /* ------------------------------------------------------------------------- */
3444 
3445 /* the following are protected by the fork/join lock */
3446 /* write: lock read: anytime */
3447 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3448 /* Holds old arrays of __kmp_threads until library shutdown */
3449 extern kmp_old_threads_list_t *__kmp_old_threads_list;
3450 /* read/write: lock */
3451 extern volatile kmp_team_t *__kmp_team_pool;
3452 extern volatile kmp_info_t *__kmp_thread_pool;
3453 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3454 
3455 // total num threads reachable from some root thread including all root threads
3456 extern volatile int __kmp_nth;
3457 /* total number of threads reachable from some root thread including all root
3458  threads, and those in the thread pool */
3459 extern volatile int __kmp_all_nth;
3460 extern std::atomic<int> __kmp_thread_pool_active_nth;
3461 
3462 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3463 /* end data protected by fork/join lock */
3464 /* ------------------------------------------------------------------------- */
3465 
3466 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3467 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3468 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3469 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3470 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3471 
3472 // AT: Which way is correct?
3473 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3474 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3475 #define __kmp_get_team_num_threads(gtid) \
3476  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3477 
3478 static inline bool KMP_UBER_GTID(int gtid) {
3479  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3480  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3481  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3482  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3483 }
3484 
3485 static inline int __kmp_tid_from_gtid(int gtid) {
3486  KMP_DEBUG_ASSERT(gtid >= 0);
3487  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3488 }
3489 
3490 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3491  KMP_DEBUG_ASSERT(tid >= 0 && team);
3492  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3493 }
3494 
3495 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3496  KMP_DEBUG_ASSERT(thr);
3497  return thr->th.th_info.ds.ds_gtid;
3498 }
3499 
3500 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3501  KMP_DEBUG_ASSERT(gtid >= 0);
3502  return __kmp_threads[gtid];
3503 }
3504 
3505 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3506  KMP_DEBUG_ASSERT(gtid >= 0);
3507  return __kmp_threads[gtid]->th.th_team;
3508 }
3509 
3510 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3511  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3512  KMP_FATAL(ThreadIdentInvalid);
3513 }
3514 
3515 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3516 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3517 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3518 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3519 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3520 #endif
3521 
3522 #if KMP_HAVE_UMWAIT
3523 extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3524 extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3525 extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3526 extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3527 #endif
3528 
3529 /* ------------------------------------------------------------------------- */
3530 
3531 extern kmp_global_t __kmp_global; /* global status */
3532 
3533 extern kmp_info_t __kmp_monitor;
3534 // For Debugging Support Library
3535 extern std::atomic<kmp_int32> __kmp_team_counter;
3536 // For Debugging Support Library
3537 extern std::atomic<kmp_int32> __kmp_task_counter;
3538 
3539 #if USE_DEBUGGER
3540 #define _KMP_GEN_ID(counter) \
3541  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3542 #else
3543 #define _KMP_GEN_ID(counter) (~0)
3544 #endif /* USE_DEBUGGER */
3545 
3546 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3547 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3548 
3549 /* ------------------------------------------------------------------------ */
3550 
3551 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3552  size_t size, char const *format, ...);
3553 
3554 extern void __kmp_serial_initialize(void);
3555 extern void __kmp_middle_initialize(void);
3556 extern void __kmp_parallel_initialize(void);
3557 
3558 extern void __kmp_internal_begin(void);
3559 extern void __kmp_internal_end_library(int gtid);
3560 extern void __kmp_internal_end_thread(int gtid);
3561 extern void __kmp_internal_end_atexit(void);
3562 extern void __kmp_internal_end_dtor(void);
3563 extern void __kmp_internal_end_dest(void *);
3564 
3565 extern int __kmp_register_root(int initial_thread);
3566 extern void __kmp_unregister_root(int gtid);
3567 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3568 
3569 extern int __kmp_ignore_mppbeg(void);
3570 extern int __kmp_ignore_mppend(void);
3571 
3572 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3573 extern void __kmp_exit_single(int gtid);
3574 
3575 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3576 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3577 
3578 #ifdef USE_LOAD_BALANCE
3579 extern int __kmp_get_load_balance(int);
3580 #endif
3581 
3582 extern int __kmp_get_global_thread_id(void);
3583 extern int __kmp_get_global_thread_id_reg(void);
3584 extern void __kmp_exit_thread(int exit_status);
3585 extern void __kmp_abort(char const *format, ...);
3586 extern void __kmp_abort_thread(void);
3587 KMP_NORETURN extern void __kmp_abort_process(void);
3588 extern void __kmp_warn(char const *format, ...);
3589 
3590 extern void __kmp_set_num_threads(int new_nth, int gtid);
3591 
3592 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3593 // registered.
3594 static inline kmp_info_t *__kmp_entry_thread() {
3595  int gtid = __kmp_entry_gtid();
3596 
3597  return __kmp_threads[gtid];
3598 }
3599 
3600 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3601 extern int __kmp_get_max_active_levels(int gtid);
3602 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3603 extern int __kmp_get_team_size(int gtid, int level);
3604 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3605 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3606 
3607 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3608 extern void __kmp_init_random(kmp_info_t *thread);
3609 
3610 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3611 extern void __kmp_adjust_num_threads(int new_nproc);
3612 extern void __kmp_check_stksize(size_t *val);
3613 
3614 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3615 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3616 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3617 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3618 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3619 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3620 
3621 #if USE_FAST_MEMORY
3622 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3623  size_t size KMP_SRC_LOC_DECL);
3624 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3625 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3626 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3627 #define __kmp_fast_allocate(this_thr, size) \
3628  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3629 #define __kmp_fast_free(this_thr, ptr) \
3630  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3631 #endif
3632 
3633 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3634 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3635  size_t elsize KMP_SRC_LOC_DECL);
3636 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3637  size_t size KMP_SRC_LOC_DECL);
3638 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3639 #define __kmp_thread_malloc(th, size) \
3640  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3641 #define __kmp_thread_calloc(th, nelem, elsize) \
3642  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3643 #define __kmp_thread_realloc(th, ptr, size) \
3644  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3645 #define __kmp_thread_free(th, ptr) \
3646  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3647 
3648 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3649 
3650 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3651  kmp_proc_bind_t proc_bind);
3652 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3653  int num_threads);
3654 extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3655  int num_teams_ub, int num_threads);
3656 
3657 extern void __kmp_yield();
3658 
3659 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3660  enum sched_type schedule, kmp_int32 lb,
3661  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3662 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3663  enum sched_type schedule, kmp_uint32 lb,
3664  kmp_uint32 ub, kmp_int32 st,
3665  kmp_int32 chunk);
3666 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3667  enum sched_type schedule, kmp_int64 lb,
3668  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3669 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3670  enum sched_type schedule, kmp_uint64 lb,
3671  kmp_uint64 ub, kmp_int64 st,
3672  kmp_int64 chunk);
3673 
3674 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3675  kmp_int32 *p_last, kmp_int32 *p_lb,
3676  kmp_int32 *p_ub, kmp_int32 *p_st);
3677 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3678  kmp_int32 *p_last, kmp_uint32 *p_lb,
3679  kmp_uint32 *p_ub, kmp_int32 *p_st);
3680 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3681  kmp_int32 *p_last, kmp_int64 *p_lb,
3682  kmp_int64 *p_ub, kmp_int64 *p_st);
3683 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3684  kmp_int32 *p_last, kmp_uint64 *p_lb,
3685  kmp_uint64 *p_ub, kmp_int64 *p_st);
3686 
3687 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3688 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3689 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3690 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3691 
3692 #ifdef KMP_GOMP_COMPAT
3693 
3694 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3695  enum sched_type schedule, kmp_int32 lb,
3696  kmp_int32 ub, kmp_int32 st,
3697  kmp_int32 chunk, int push_ws);
3698 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3699  enum sched_type schedule, kmp_uint32 lb,
3700  kmp_uint32 ub, kmp_int32 st,
3701  kmp_int32 chunk, int push_ws);
3702 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3703  enum sched_type schedule, kmp_int64 lb,
3704  kmp_int64 ub, kmp_int64 st,
3705  kmp_int64 chunk, int push_ws);
3706 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3707  enum sched_type schedule, kmp_uint64 lb,
3708  kmp_uint64 ub, kmp_int64 st,
3709  kmp_int64 chunk, int push_ws);
3710 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3711 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3712 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3713 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3714 
3715 #endif /* KMP_GOMP_COMPAT */
3716 
3717 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3718 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3719 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3720 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3721 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3722 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3723  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3724  void *obj);
3725 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3726  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3727 
3728 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3729  int final_spin
3730 #if USE_ITT_BUILD
3731  ,
3732  void *itt_sync_obj
3733 #endif
3734 );
3735 extern void __kmp_release_64(kmp_flag_64<> *flag);
3736 
3737 extern void __kmp_infinite_loop(void);
3738 
3739 extern void __kmp_cleanup(void);
3740 
3741 #if KMP_HANDLE_SIGNALS
3742 extern int __kmp_handle_signals;
3743 extern void __kmp_install_signals(int parallel_init);
3744 extern void __kmp_remove_signals(void);
3745 #endif
3746 
3747 extern void __kmp_clear_system_time(void);
3748 extern void __kmp_read_system_time(double *delta);
3749 
3750 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3751 
3752 extern void __kmp_expand_host_name(char *buffer, size_t size);
3753 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3754 
3755 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3756 extern void
3757 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3758 #endif
3759 
3760 extern void
3761 __kmp_runtime_initialize(void); /* machine specific initialization */
3762 extern void __kmp_runtime_destroy(void);
3763 
3764 #if KMP_AFFINITY_SUPPORTED
3765 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3766  kmp_affin_mask_t *mask);
3767 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3768  kmp_affin_mask_t *mask);
3769 extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3770 extern void __kmp_affinity_uninitialize(void);
3771 extern void __kmp_affinity_set_init_mask(
3772  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3773 extern void __kmp_affinity_set_place(int gtid);
3774 extern void __kmp_affinity_determine_capable(const char *env_var);
3775 extern int __kmp_aux_set_affinity(void **mask);
3776 extern int __kmp_aux_get_affinity(void **mask);
3777 extern int __kmp_aux_get_affinity_max_proc();
3778 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3779 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3780 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3781 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3782 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3783 extern int kmp_set_thread_affinity_mask_initial(void);
3784 #endif
3785 static inline void __kmp_assign_root_init_mask() {
3786  int gtid = __kmp_entry_gtid();
3787  kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3788  if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3789  __kmp_affinity_set_init_mask(gtid, TRUE);
3790  r->r.r_affinity_assigned = TRUE;
3791  }
3792 }
3793 static inline void __kmp_reset_root_init_mask(int gtid) {
3794  if (!KMP_AFFINITY_CAPABLE())
3795  return;
3796  kmp_info_t *th = __kmp_threads[gtid];
3797  kmp_root_t *r = th->th.th_root;
3798  if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3799  __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3800  KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3801  r->r.r_affinity_assigned = FALSE;
3802  }
3803 }
3804 #else /* KMP_AFFINITY_SUPPORTED */
3805 #define __kmp_assign_root_init_mask() /* Nothing */
3806 static inline void __kmp_reset_root_init_mask(int gtid) {}
3807 #endif /* KMP_AFFINITY_SUPPORTED */
3808 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3809 // format string is for affinity, so platforms that do not support
3810 // affinity can still use the other fields, e.g., %n for num_threads
3811 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3812  kmp_str_buf_t *buffer);
3813 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3814 
3815 extern void __kmp_cleanup_hierarchy();
3816 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3817 
3818 #if KMP_USE_FUTEX
3819 
3820 extern int __kmp_futex_determine_capable(void);
3821 
3822 #endif // KMP_USE_FUTEX
3823 
3824 extern void __kmp_gtid_set_specific(int gtid);
3825 extern int __kmp_gtid_get_specific(void);
3826 
3827 extern double __kmp_read_cpu_time(void);
3828 
3829 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3830 
3831 #if KMP_USE_MONITOR
3832 extern void __kmp_create_monitor(kmp_info_t *th);
3833 #endif
3834 
3835 extern void *__kmp_launch_thread(kmp_info_t *thr);
3836 
3837 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3838 
3839 #if KMP_OS_WINDOWS
3840 extern int __kmp_still_running(kmp_info_t *th);
3841 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3842 extern void __kmp_free_handle(kmp_thread_t tHandle);
3843 #endif
3844 
3845 #if KMP_USE_MONITOR
3846 extern void __kmp_reap_monitor(kmp_info_t *th);
3847 #endif
3848 extern void __kmp_reap_worker(kmp_info_t *th);
3849 extern void __kmp_terminate_thread(int gtid);
3850 
3851 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3852 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3853 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3854 
3855 extern void __kmp_elapsed(double *);
3856 extern void __kmp_elapsed_tick(double *);
3857 
3858 extern void __kmp_enable(int old_state);
3859 extern void __kmp_disable(int *old_state);
3860 
3861 extern void __kmp_thread_sleep(int millis);
3862 
3863 extern void __kmp_common_initialize(void);
3864 extern void __kmp_common_destroy(void);
3865 extern void __kmp_common_destroy_gtid(int gtid);
3866 
3867 #if KMP_OS_UNIX
3868 extern void __kmp_register_atfork(void);
3869 #endif
3870 extern void __kmp_suspend_initialize(void);
3871 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3872 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3873 
3874 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3875  int tid);
3876 extern kmp_team_t *
3877 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3878 #if OMPT_SUPPORT
3879  ompt_data_t ompt_parallel_data,
3880 #endif
3881  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3882  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3883 extern void __kmp_free_thread(kmp_info_t *);
3884 extern void __kmp_free_team(kmp_root_t *,
3885  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3886 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3887 
3888 /* ------------------------------------------------------------------------ */
3889 
3890 extern void __kmp_initialize_bget(kmp_info_t *th);
3891 extern void __kmp_finalize_bget(kmp_info_t *th);
3892 
3893 KMP_EXPORT void *kmpc_malloc(size_t size);
3894 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3895 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3896 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3897 KMP_EXPORT void kmpc_free(void *ptr);
3898 
3899 /* declarations for internal use */
3900 
3901 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3902  size_t reduce_size, void *reduce_data,
3903  void (*reduce)(void *, void *));
3904 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3905 extern int __kmp_barrier_gomp_cancel(int gtid);
3906 
3911 enum fork_context_e {
3912  fork_context_gnu,
3914  fork_context_intel,
3915  fork_context_last
3916 };
3917 extern int __kmp_fork_call(ident_t *loc, int gtid,
3918  enum fork_context_e fork_context, kmp_int32 argc,
3919  microtask_t microtask, launch_t invoker,
3920  kmp_va_list ap);
3921 
3922 extern void __kmp_join_call(ident_t *loc, int gtid
3923 #if OMPT_SUPPORT
3924  ,
3925  enum fork_context_e fork_context
3926 #endif
3927  ,
3928  int exit_teams = 0);
3929 
3930 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3931 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3932 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3933 extern int __kmp_invoke_task_func(int gtid);
3934 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3935  kmp_info_t *this_thr,
3936  kmp_team_t *team);
3937 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3938  kmp_info_t *this_thr,
3939  kmp_team_t *team);
3940 
3941 // should never have been exported
3942 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3943 extern int __kmp_invoke_teams_master(int gtid);
3944 extern void __kmp_teams_master(int gtid);
3945 extern int __kmp_aux_get_team_num();
3946 extern int __kmp_aux_get_num_teams();
3947 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3948 extern void __kmp_user_set_library(enum library_type arg);
3949 extern void __kmp_aux_set_library(enum library_type arg);
3950 extern void __kmp_aux_set_stacksize(size_t arg);
3951 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3952 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3953 
3954 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3955 void kmpc_set_blocktime(int arg);
3956 void ompc_set_nested(int flag);
3957 void ompc_set_dynamic(int flag);
3958 void ompc_set_num_threads(int arg);
3959 
3960 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3961  kmp_team_t *team, int tid);
3962 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3963 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3964  kmp_tasking_flags_t *flags,
3965  size_t sizeof_kmp_task_t,
3966  size_t sizeof_shareds,
3967  kmp_routine_entry_t task_entry);
3968 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3969  kmp_team_t *team, int tid,
3970  int set_curr_task);
3971 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3972 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3973 
3974 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3975  int gtid,
3976  kmp_task_t *task);
3977 extern void __kmp_fulfill_event(kmp_event_t *event);
3978 
3979 extern void __kmp_free_task_team(kmp_info_t *thread,
3980  kmp_task_team_t *task_team);
3981 extern void __kmp_reap_task_teams(void);
3982 extern void __kmp_wait_to_unref_task_teams(void);
3983 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3984  int always);
3985 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3986 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3987 #if USE_ITT_BUILD
3988  ,
3989  void *itt_sync_obj
3990 #endif /* USE_ITT_BUILD */
3991  ,
3992  int wait = 1);
3993 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3994  int gtid);
3995 
3996 extern int __kmp_is_address_mapped(void *addr);
3997 extern kmp_uint64 __kmp_hardware_timestamp(void);
3998 
3999 #if KMP_OS_UNIX
4000 extern int __kmp_read_from_file(char const *path, char const *format, ...);
4001 #endif
4002 
4003 /* ------------------------------------------------------------------------ */
4004 //
4005 // Assembly routines that have no compiler intrinsic replacement
4006 //
4007 
4008 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4009  void *argv[]
4010 #if OMPT_SUPPORT
4011  ,
4012  void **exit_frame_ptr
4013 #endif
4014 );
4015 
4016 /* ------------------------------------------------------------------------ */
4017 
4018 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4019 KMP_EXPORT void __kmpc_end(ident_t *);
4020 
4021 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4022  kmpc_ctor_vec ctor,
4023  kmpc_cctor_vec cctor,
4024  kmpc_dtor_vec dtor,
4025  size_t vector_length);
4026 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4027  kmpc_ctor ctor, kmpc_cctor cctor,
4028  kmpc_dtor dtor);
4029 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4030  void *data, size_t size);
4031 
4032 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4033 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4034 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4035 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4036 
4037 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4038 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4039  kmpc_micro microtask, ...);
4040 KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4041  kmpc_micro microtask, kmp_int32 cond,
4042  void *args);
4043 
4044 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4045 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4046 
4047 KMP_EXPORT void __kmpc_flush(ident_t *);
4048 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4049 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4050 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4051 KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4052  kmp_int32 filter);
4053 KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4054 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4055 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4056 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4057  kmp_critical_name *);
4058 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4059  kmp_critical_name *);
4060 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4061  kmp_critical_name *, uint32_t hint);
4062 
4063 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4064 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4065 
4066 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4067  kmp_int32 global_tid);
4068 
4069 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4070 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4071 
4072 KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4073 KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4074  kmp_int32 numberOfSections);
4075 KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4076 
4077 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4078  kmp_int32 schedtype, kmp_int32 *plastiter,
4079  kmp_int *plower, kmp_int *pupper,
4080  kmp_int *pstride, kmp_int incr,
4081  kmp_int chunk);
4082 
4083 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4084 
4085 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4086  size_t cpy_size, void *cpy_data,
4087  void (*cpy_func)(void *, void *),
4088  kmp_int32 didit);
4089 
4090 KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4091  void *cpy_data);
4092 
4093 extern void KMPC_SET_NUM_THREADS(int arg);
4094 extern void KMPC_SET_DYNAMIC(int flag);
4095 extern void KMPC_SET_NESTED(int flag);
4096 
4097 /* OMP 3.0 tasking interface routines */
4098 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4099  kmp_task_t *new_task);
4100 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4101  kmp_int32 flags,
4102  size_t sizeof_kmp_task_t,
4103  size_t sizeof_shareds,
4104  kmp_routine_entry_t task_entry);
4105 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4106  ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4107  size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4108 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4109  kmp_task_t *task);
4110 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4111  kmp_task_t *task);
4112 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4113  kmp_task_t *new_task);
4114 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4115 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4116  int end_part);
4117 
4118 #if TASK_UNUSED
4119 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4120 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4121  kmp_task_t *task);
4122 #endif // TASK_UNUSED
4123 
4124 /* ------------------------------------------------------------------------ */
4125 
4126 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4127 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4128 
4129 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4130  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4131  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4132  kmp_depend_info_t *noalias_dep_list);
4133 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4134  kmp_int32 ndeps,
4135  kmp_depend_info_t *dep_list,
4136  kmp_int32 ndeps_noalias,
4137  kmp_depend_info_t *noalias_dep_list);
4138 /* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4139  * Placeholder for taskwait with nowait clause.*/
4140 KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4141  kmp_int32 ndeps,
4142  kmp_depend_info_t *dep_list,
4143  kmp_int32 ndeps_noalias,
4144  kmp_depend_info_t *noalias_dep_list,
4145  kmp_int32 has_no_wait);
4146 
4147 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4148  bool serialize_immediate);
4149 
4150 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4151  kmp_int32 cncl_kind);
4152 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4153  kmp_int32 cncl_kind);
4154 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4155 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4156 
4157 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4158 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4159 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4160  kmp_int32 if_val, kmp_uint64 *lb,
4161  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4162  kmp_int32 sched, kmp_uint64 grainsize,
4163  void *task_dup);
4164 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4165  kmp_task_t *task, kmp_int32 if_val,
4166  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4167  kmp_int32 nogroup, kmp_int32 sched,
4168  kmp_uint64 grainsize, kmp_int32 modifier,
4169  void *task_dup);
4170 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4171 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4172 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4173 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4174  int is_ws, int num,
4175  void *data);
4176 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4177  int num, void *data);
4178 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4179  int is_ws);
4180 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4181  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4182  kmp_task_affinity_info_t *affin_list);
4183 KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4184 KMP_EXPORT int __kmp_get_max_teams(void);
4185 KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4186 KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4187 
4188 /* Interface target task integration */
4189 KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4190 KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4191 
4192 /* Lock interface routines (fast versions with gtid passed in) */
4193 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4194  void **user_lock);
4195 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4196  void **user_lock);
4197 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4198  void **user_lock);
4199 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4200  void **user_lock);
4201 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4202 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4203  void **user_lock);
4204 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4205  void **user_lock);
4206 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4207  void **user_lock);
4208 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4209 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4210  void **user_lock);
4211 
4212 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4213  void **user_lock, uintptr_t hint);
4214 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4215  void **user_lock,
4216  uintptr_t hint);
4217 
4218 #if OMPX_TASKGRAPH
4219 // Taskgraph's Record & Replay mechanism
4220 // __kmp_tdg_is_recording: check whether a given TDG is recording
4221 // status: the tdg's current status
4222 static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4223  return status == KMP_TDG_RECORDING;
4224 }
4225 
4226 KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4227  kmp_int32 input_flags,
4228  kmp_int32 tdg_id);
4229 KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4230  kmp_int32 input_flags, kmp_int32 tdg_id);
4231 #endif
4232 /* Interface to fast scalable reduce methods routines */
4233 
4234 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4235  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4236  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4237  kmp_critical_name *lck);
4238 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4239  kmp_critical_name *lck);
4240 KMP_EXPORT kmp_int32 __kmpc_reduce(
4241  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4242  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4243  kmp_critical_name *lck);
4244 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4245  kmp_critical_name *lck);
4246 
4247 /* Internal fast reduction routines */
4248 
4249 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4250  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4251  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4252  kmp_critical_name *lck);
4253 
4254 // this function is for testing set/get/determine reduce method
4255 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4256 
4257 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4258 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4259 
4260 // C++ port
4261 // missing 'extern "C"' declarations
4262 
4263 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4264 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4265 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4266  kmp_int32 num_threads);
4267 
4268 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4269  int proc_bind);
4270 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4271  kmp_int32 num_teams,
4272  kmp_int32 num_threads);
4273 /* Function for OpenMP 5.1 num_teams clause */
4274 KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4275  kmp_int32 num_teams_lb,
4276  kmp_int32 num_teams_ub,
4277  kmp_int32 num_threads);
4278 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4279  kmpc_micro microtask, ...);
4280 struct kmp_dim { // loop bounds info casted to kmp_int64
4281  kmp_int64 lo; // lower
4282  kmp_int64 up; // upper
4283  kmp_int64 st; // stride
4284 };
4285 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4286  kmp_int32 num_dims,
4287  const struct kmp_dim *dims);
4288 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4289  const kmp_int64 *vec);
4290 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4291  const kmp_int64 *vec);
4292 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4293 
4294 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4295  void *data, size_t size,
4296  void ***cache);
4297 
4298 // The routines below are not exported.
4299 // Consider making them 'static' in corresponding source files.
4300 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4301  void *data_addr, size_t pc_size);
4302 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4303  void *data_addr,
4304  size_t pc_size);
4305 void __kmp_threadprivate_resize_cache(int newCapacity);
4306 void __kmp_cleanup_threadprivate_caches();
4307 
4308 // ompc_, kmpc_ entries moved from omp.h.
4309 #if KMP_OS_WINDOWS
4310 #define KMPC_CONVENTION __cdecl
4311 #else
4312 #define KMPC_CONVENTION
4313 #endif
4314 
4315 #ifndef __OMP_H
4316 typedef enum omp_sched_t {
4317  omp_sched_static = 1,
4318  omp_sched_dynamic = 2,
4319  omp_sched_guided = 3,
4320  omp_sched_auto = 4
4321 } omp_sched_t;
4322 typedef void *kmp_affinity_mask_t;
4323 #endif
4324 
4325 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4326 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4327 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4328 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4329 KMP_EXPORT int KMPC_CONVENTION
4330 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4331 KMP_EXPORT int KMPC_CONVENTION
4332 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4333 KMP_EXPORT int KMPC_CONVENTION
4334 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4335 
4336 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4337 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4338 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4339 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4340 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4341 void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4342 size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4343 void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4344 size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4345  char const *format);
4346 
4347 enum kmp_target_offload_kind {
4348  tgt_disabled = 0,
4349  tgt_default = 1,
4350  tgt_mandatory = 2
4351 };
4352 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4353 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4354 extern kmp_target_offload_kind_t __kmp_target_offload;
4355 extern int __kmpc_get_target_offload();
4356 
4357 // Constants used in libomptarget
4358 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4359 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4360 
4361 // OMP Pause Resource
4362 
4363 // The following enum is used both to set the status in __kmp_pause_status, and
4364 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4365 typedef enum kmp_pause_status_t {
4366  kmp_not_paused = 0, // status is not paused, or, requesting resume
4367  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4368  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4369 } kmp_pause_status_t;
4370 
4371 // This stores the pause state of the runtime
4372 extern kmp_pause_status_t __kmp_pause_status;
4373 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4374 extern int __kmp_pause_resource(kmp_pause_status_t level);
4375 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4376 extern void __kmp_resume_if_soft_paused();
4377 // Hard resume simply resets the status to not paused. Library will appear to
4378 // be uninitialized after hard pause. Let OMP constructs trigger required
4379 // initializations.
4380 static inline void __kmp_resume_if_hard_paused() {
4381  if (__kmp_pause_status == kmp_hard_paused) {
4382  __kmp_pause_status = kmp_not_paused;
4383  }
4384 }
4385 
4386 extern void __kmp_omp_display_env(int verbose);
4387 
4388 // 1: it is initializing hidden helper team
4389 extern volatile int __kmp_init_hidden_helper;
4390 // 1: the hidden helper team is done
4391 extern volatile int __kmp_hidden_helper_team_done;
4392 // 1: enable hidden helper task
4393 extern kmp_int32 __kmp_enable_hidden_helper;
4394 // Main thread of hidden helper team
4395 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4396 // Descriptors for the hidden helper threads
4397 extern kmp_info_t **__kmp_hidden_helper_threads;
4398 // Number of hidden helper threads
4399 extern kmp_int32 __kmp_hidden_helper_threads_num;
4400 // Number of hidden helper tasks that have not been executed yet
4401 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4402 
4403 extern void __kmp_hidden_helper_initialize();
4404 extern void __kmp_hidden_helper_threads_initz_routine();
4405 extern void __kmp_do_initialize_hidden_helper_threads();
4406 extern void __kmp_hidden_helper_threads_initz_wait();
4407 extern void __kmp_hidden_helper_initz_release();
4408 extern void __kmp_hidden_helper_threads_deinitz_wait();
4409 extern void __kmp_hidden_helper_threads_deinitz_release();
4410 extern void __kmp_hidden_helper_main_thread_wait();
4411 extern void __kmp_hidden_helper_worker_thread_wait();
4412 extern void __kmp_hidden_helper_worker_thread_signal();
4413 extern void __kmp_hidden_helper_main_thread_release();
4414 
4415 // Check whether a given thread is a hidden helper thread
4416 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4417  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4418 
4419 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4420  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4421 
4422 #define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4423  ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4424 
4425 #define KMP_HIDDEN_HELPER_TEAM(team) \
4426  (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4427 
4428 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4429 // main thread, is skipped.
4430 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4431  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4432 
4433 // Return the adjusted gtid value by subtracting from gtid the number
4434 // of hidden helper threads. This adjusted value is the gtid the thread would
4435 // have received if there were no hidden helper threads.
4436 static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4437  int adjusted_gtid = gtid;
4438  if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4439  gtid - __kmp_hidden_helper_threads_num >= 0) {
4440  adjusted_gtid -= __kmp_hidden_helper_threads_num;
4441  }
4442  return adjusted_gtid;
4443 }
4444 
4445 // Support for error directive
4446 typedef enum kmp_severity_t {
4447  severity_warning = 1,
4448  severity_fatal = 2
4449 } kmp_severity_t;
4450 extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4451 
4452 // Support for scope directive
4453 KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4454 KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4455 
4456 #ifdef __cplusplus
4457 }
4458 #endif
4459 
4460 template <bool C, bool S>
4461 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4462 template <bool C, bool S>
4463 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4464 template <bool C, bool S>
4465 extern void __kmp_atomic_suspend_64(int th_gtid,
4466  kmp_atomic_flag_64<C, S> *flag);
4467 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4468 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4469 template <bool C, bool S>
4470 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4471 template <bool C, bool S>
4472 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4473 template <bool C, bool S>
4474 extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4475 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4476 #endif
4477 template <bool C, bool S>
4478 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4479 template <bool C, bool S>
4480 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4481 template <bool C, bool S>
4482 extern void __kmp_atomic_resume_64(int target_gtid,
4483  kmp_atomic_flag_64<C, S> *flag);
4484 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4485 
4486 template <bool C, bool S>
4487 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4488  kmp_flag_32<C, S> *flag, int final_spin,
4489  int *thread_finished,
4490 #if USE_ITT_BUILD
4491  void *itt_sync_obj,
4492 #endif /* USE_ITT_BUILD */
4493  kmp_int32 is_constrained);
4494 template <bool C, bool S>
4495 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4496  kmp_flag_64<C, S> *flag, int final_spin,
4497  int *thread_finished,
4498 #if USE_ITT_BUILD
4499  void *itt_sync_obj,
4500 #endif /* USE_ITT_BUILD */
4501  kmp_int32 is_constrained);
4502 template <bool C, bool S>
4503 int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4504  kmp_atomic_flag_64<C, S> *flag,
4505  int final_spin, int *thread_finished,
4506 #if USE_ITT_BUILD
4507  void *itt_sync_obj,
4508 #endif /* USE_ITT_BUILD */
4509  kmp_int32 is_constrained);
4510 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4511  kmp_flag_oncore *flag, int final_spin,
4512  int *thread_finished,
4513 #if USE_ITT_BUILD
4514  void *itt_sync_obj,
4515 #endif /* USE_ITT_BUILD */
4516  kmp_int32 is_constrained);
4517 
4518 extern int __kmp_nesting_mode;
4519 extern int __kmp_nesting_mode_nlevels;
4520 extern int *__kmp_nesting_nth_level;
4521 extern void __kmp_init_nesting_mode();
4522 extern void __kmp_set_nesting_mode_threads();
4523 
4531  FILE *f;
4532 
4533  void close() {
4534  if (f && f != stdout && f != stderr) {
4535  fclose(f);
4536  f = nullptr;
4537  }
4538  }
4539 
4540 public:
4541  kmp_safe_raii_file_t() : f(nullptr) {}
4542  kmp_safe_raii_file_t(const char *filename, const char *mode,
4543  const char *env_var = nullptr)
4544  : f(nullptr) {
4545  open(filename, mode, env_var);
4546  }
4547  ~kmp_safe_raii_file_t() { close(); }
4548 
4552  void open(const char *filename, const char *mode,
4553  const char *env_var = nullptr) {
4554  KMP_ASSERT(!f);
4555  f = fopen(filename, mode);
4556  if (!f) {
4557  int code = errno;
4558  if (env_var) {
4559  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4560  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4561  } else {
4562  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4563  __kmp_msg_null);
4564  }
4565  }
4566  }
4569  int try_open(const char *filename, const char *mode) {
4570  KMP_ASSERT(!f);
4571  f = fopen(filename, mode);
4572  if (!f)
4573  return errno;
4574  return 0;
4575  }
4578  void set_stdout() {
4579  KMP_ASSERT(!f);
4580  f = stdout;
4581  }
4584  void set_stderr() {
4585  KMP_ASSERT(!f);
4586  f = stderr;
4587  }
4588  operator bool() { return bool(f); }
4589  operator FILE *() { return f; }
4590 };
4591 
4592 template <typename SourceType, typename TargetType,
4593  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4594  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4595  bool isSourceSigned = std::is_signed<SourceType>::value,
4596  bool isTargetSigned = std::is_signed<TargetType>::value>
4597 struct kmp_convert {};
4598 
4599 // Both types are signed; Source smaller
4600 template <typename SourceType, typename TargetType>
4601 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4602  static TargetType to(SourceType src) { return (TargetType)src; }
4603 };
4604 // Source equal
4605 template <typename SourceType, typename TargetType>
4606 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4607  static TargetType to(SourceType src) { return src; }
4608 };
4609 // Source bigger
4610 template <typename SourceType, typename TargetType>
4611 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4612  static TargetType to(SourceType src) {
4613  KMP_ASSERT(src <= static_cast<SourceType>(
4614  (std::numeric_limits<TargetType>::max)()));
4615  KMP_ASSERT(src >= static_cast<SourceType>(
4616  (std::numeric_limits<TargetType>::min)()));
4617  return (TargetType)src;
4618  }
4619 };
4620 
4621 // Source signed, Target unsigned
4622 // Source smaller
4623 template <typename SourceType, typename TargetType>
4624 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4625  static TargetType to(SourceType src) {
4626  KMP_ASSERT(src >= 0);
4627  return (TargetType)src;
4628  }
4629 };
4630 // Source equal
4631 template <typename SourceType, typename TargetType>
4632 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4633  static TargetType to(SourceType src) {
4634  KMP_ASSERT(src >= 0);
4635  return (TargetType)src;
4636  }
4637 };
4638 // Source bigger
4639 template <typename SourceType, typename TargetType>
4640 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4641  static TargetType to(SourceType src) {
4642  KMP_ASSERT(src >= 0);
4643  KMP_ASSERT(src <= static_cast<SourceType>(
4644  (std::numeric_limits<TargetType>::max)()));
4645  return (TargetType)src;
4646  }
4647 };
4648 
4649 // Source unsigned, Target signed
4650 // Source smaller
4651 template <typename SourceType, typename TargetType>
4652 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4653  static TargetType to(SourceType src) { return (TargetType)src; }
4654 };
4655 // Source equal
4656 template <typename SourceType, typename TargetType>
4657 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4658  static TargetType to(SourceType src) {
4659  KMP_ASSERT(src <= static_cast<SourceType>(
4660  (std::numeric_limits<TargetType>::max)()));
4661  return (TargetType)src;
4662  }
4663 };
4664 // Source bigger
4665 template <typename SourceType, typename TargetType>
4666 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4667  static TargetType to(SourceType src) {
4668  KMP_ASSERT(src <= static_cast<SourceType>(
4669  (std::numeric_limits<TargetType>::max)()));
4670  return (TargetType)src;
4671  }
4672 };
4673 
4674 // Source unsigned, Target unsigned
4675 // Source smaller
4676 template <typename SourceType, typename TargetType>
4677 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4678  static TargetType to(SourceType src) { return (TargetType)src; }
4679 };
4680 // Source equal
4681 template <typename SourceType, typename TargetType>
4682 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4683  static TargetType to(SourceType src) { return src; }
4684 };
4685 // Source bigger
4686 template <typename SourceType, typename TargetType>
4687 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4688  static TargetType to(SourceType src) {
4689  KMP_ASSERT(src <= static_cast<SourceType>(
4690  (std::numeric_limits<TargetType>::max)()));
4691  return (TargetType)src;
4692  }
4693 };
4694 
4695 template <typename T1, typename T2>
4696 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4697  *dest = kmp_convert<T1, T2>::to(src);
4698 }
4699 
4700 #endif /* KMP_H */
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
void set_stderr()
Definition: kmp.h:4584
kmp_int32 reserved_2
Definition: kmp.h:238
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1713
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1736
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
void set_stdout()
Definition: kmp.h:4578
kmp_int32 reserved_1
Definition: kmp.h:235
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1730
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
kmp_int32 reserved_3
Definition: kmp.h:243
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1742
KMP_EXPORT void __kmpc_flush(ident_t *)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1720
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
Definition: kmp.h:234
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1707
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4569
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4552
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1689
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
char const * psource
Definition: kmp.h:244
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
kmp_int32 flags
Definition: kmp.h:236
struct ident ident_t